TY - JOUR A1 - Vogel, Sebastian A1 - Prinzing, Andreas A1 - Bußler, Heinz A1 - Müller, Jörg A1 - Schmidt, Stefan A1 - Thorn, Simon T1 - Abundance, not diversity, of host beetle communities determines abundance and diversity of parasitoids in deadwood JF - Ecology and Evolution N2 - Most parasites and parasitoids are adapted to overcome defense mechanisms of their specific hosts and hence colonize a narrow range of host species. Accordingly, an increase in host functional or phylogenetic dissimilarity is expected to increase the species diversity of parasitoids. However, the local diversity of parasitoids may be driven by the accessibility and detectability of hosts, both increasing with increasing host abundance. Yet, the relative importance of these two mechanisms remains unclear. We parallelly reared communities of saproxylic beetle as potential hosts and associated parasitoid Hymenoptera from experimentally felled trees. The dissimilarity of beetle communities was inferred from distances in seven functional traits and from their evolutionary ancestry. We tested the effect of host abundance, species richness, functional, and phylogenetic dissimilarities on the abundance, species richness, and Shannon diversity of parasitoids. Our results showed an increase of abundance, species richness, and Shannon diversity of parasitoids with increasing beetle abundance. Additionally, abundance of parasitoids increased with increasing species richness of beetles. However, functional and phylogenetic dissimilarity showed no effect on the diversity of parasitoids. Our results suggest that the local diversity of parasitoids, of ephemeral and hidden resources like saproxylic beetles, is highest when resources are abundant and thereby detectable and accessible. Hence, in some cases, resources do not need to be diverse to promote parasitoid diversity. KW - barcoding KW - deadwood KW - experiment KW - host–parasitoid interaction KW - natural enemy KW - specialization Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238892 VL - 11 IS - 11 SP - 6881 EP - 6888 ER - TY - JOUR A1 - Uhler, Johannes A1 - Redlich, Sarah A1 - Zhang, Jie A1 - Hothorn, Torsten A1 - Tobisch, Cynthia A1 - Ewald, Jörg A1 - Thorn, Simon A1 - Seibold, Sebastian A1 - Mitesser, Oliver A1 - Morinère, Jérôme A1 - Bozicevic, Vedran A1 - Benjamin, Caryl S. A1 - Englmeier, Jana A1 - Fricke, Ute A1 - Ganuza, Cristina A1 - Haensel, Maria A1 - Riebl, Rebekka A1 - Rojas-Botero, Sandra A1 - Rummler, Thomas A1 - Uphus, Lars A1 - Schmidt, Stefan A1 - Steffan-Dewenter, Ingolf A1 - Müller, Jörg T1 - Relationships of insect biomass and richness with land use along a climate gradient JF - Nature Communications N2 - Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42%), whereas differences in total richness (-29%) and the richness of threatened species (-56%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines. KW - biodiversity KW - ecology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265058 VL - 12 IS - 1 ER - TY - JOUR A1 - Hardulak, Laura A. A1 - Morinière, Jérôme A1 - Hausmann, Axel A1 - Hendrich, Lars A1 - Schmidt, Stefan A1 - Doczkal, Dieter A1 - Müller, Jörg A1 - Hebert, Paul D. N. A1 - Haszprunar, Gerhard T1 - DNA metabarcoding for biodiversity monitoring in a national park: Screening for invasive and pest species JF - Molecular Ecology Resources N2 - DNA metabarcoding was utilized for a large‐scale, multiyear assessment of biodiversity in Malaise trap collections from the Bavarian Forest National Park (Germany, Bavaria). Principal component analysis of read count‐based biodiversities revealed clustering in concordance with whether collection sites were located inside or outside of the National Park. Jaccard distance matrices of the presences of barcode index numbers (BINs) at collection sites in the two survey years (2016 and 2018) were significantly correlated. Overall similar patterns in the presence of total arthropod BINs, as well as BINs belonging to four major arthropod orders across the study area, were observed in both survey years, and are also comparable with results of a previous study based on DNA barcoding of Sanger‐sequenced specimens. A custom reference sequence library was assembled from publicly available data to screen for pest or invasive arthropods among the specimens or from the preservative ethanol. A single 98.6% match to the invasive bark beetle Ips duplicatus was detected in an ethanol sample. This species has not previously been detected in the National Park. KW - biodiversity KW - DNA barcoding KW - invasive species KW - metabarcoding KW - monitoring KW - pest species Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217812 VL - 20 IS - 6 SP - 1542 EP - 1557 ER - TY - JOUR A1 - Floren, Andreas A1 - von Rintelen, Thomas A1 - Herbert, Paul D. N. A1 - de Araujo, Bruno Cancian A1 - Schmidt, Stefan A1 - Balke, Michael A1 - Narakusumo, Raden Pramesa A1 - Peggie, Djunijanti A1 - Ubaidillah, Rosichon A1 - von Rintelen, Kristina A1 - Müller, Tobias T1 - Integrative ecological and molecular analysis indicate high diversity and strict elevational separation of canopy beetles in tropical mountain forests JF - Scientific Reports N2 - Tropical mountain forests contribute disproportionately to terrestrial biodiversity but little is known about insect diversity in the canopy and how it is distributed between tree species. We sampled tree-specific arthropod communities from 28 trees by canopy fogging and analysed beetle communities which were first morphotyped and then identified by their DNA barcodes. Our results show that communities from forests at 1100 and 1700 m a.s.l. are almost completely distinct. Diversity was much lower in the upper forest while community structure changed from many rare, less abundant species to communities with a pronounced dominance structure. We also found significantly higher beta-diversity between trees at the lower than higher elevation forest where community similarity was high. Comparisons on tree species found at both elevations reinforced these results. There was little species overlap between sites indicating limited elevational ranges. Furthermore, we exploited the advantage of DNA barcodes to patterns of haplotype diversity in some of the commoner species. Our results support the advantage of fogging and DNA barcodes for community studies and underline the need for comprehensive research aimed at the preservation of these last remaining pristine forests. KW - beta-diversity KW - community data KW - gradients KW - insects KW - hypthesis KW - evolution KW - passes KW - ants Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230565 VL - 10 ER -