TY - THES A1 - Vicik, Radim T1 - Synthese und Eigenschaften N-Acylierter Aziridin-2,3-dicarboxylate als selektive, peptidomimetische Inhibitoren von Cystein-Proteasen der Cathepsin-L-Subfamilie T1 - Synthesis and Properties N-Acylated Aziridin-2,3-dicarboxylates as selective, peptidomimetic Inhibitors of Cystein Proteases of Cathepsin-L-Subfamily N2 - Die Cystein-Proteasen der Säuger und Parasiten wurden erst in den letzten zwei Jahrzehnten als pharmazeutisch/medizinisches Target erkannt. Die genauen Aufgaben der einzelnen Enzyme dieser sehr umfangreichen und ständig wachsenden Protease-Familie bleiben zwar teilweise noch unbekannt, es ist jedoch klar, dass ihre Aufgabe nicht nur der unspezifische Protein-Abbau ist. Das Ziel der vorliegenden Arbeit waren die Synthese einer Reihe peptidomimetischer Inhibitoren mit elektrophilem Aziridin-2,3-dicarbonsäure-Baustein und deren Testung an den Proteasen Cathepsin B (human), Cathepsin L (Paramecium tetraurelia), Falcipain-2 (Plasmodium falciparum) und Rhodesain (Trypanosoma brucei rhodesiense). Die Verbindungen sind als irreversible Inhibitoren der Proteasen konzipiert. Der Aziridin-Baustein als Elektrophil wird durch den Cystein-Rest des aktiven Zentrums der Proteasen angegriffen, es erfolgt eine nucleophile Ringöffnung und damit die irreversible Alkylierung der Proteasen. Die Aziridin-Bausteine wurden entweder stereoselektiv aus Tartraten oder als Racemate aus Fumaraten dargestellt. Durch NMR-spektroskopische Versuche wurde der Mechanismus der Epimerisierung der als Intermediate der stereoselektiven Synthese auftretenden Azidoalkohole aufgeklärt. Die N-Acylierung des Aziridin-Bausteins mit den Aminosäuren bzw. Dipeptiden erfolgte über Segmentkopplungen oder über eine schrittweise Anknüpfung der Aminosäuren. Es wurden dabei verschiedenste Methoden der Peptidchemie eingesetzt. Die Hemmkonstanten der synthetisierten Substanzen wurden in einem kontinuierlichen fluorimetrischen Mikrotiterplatten-Assay bei Inhibitor-Konzentrationen von 0.35 - 140 µM ermittelt. Als Substrat diente für alle Enzyme Z-Phe-Arg-AMC. Der Nachweis der Irreversibilität der Hemmung wurde durch Dialyse-Versuche und die Affinitätsmarkierung von Cathepsin L und Falcipain 2 mit Hilfe eines Biotin-markierten Inhibitors erbracht. Bei Inhibitoren, die eine zeitabhängige Hemmung aufweisen, wurden die Alkylierungskonstanten (ki –Werte) ermittelt. Diese sind im Vergleich zu den Konstanten der Epoxysuccinyl-Peptide ca. 1000x kleiner, was frühere Untersuchungen bestätigt. Aus den ermittelten Dissoziationskonstanten (Ki) ist die Selektivität für Cathepsin-L-ähnliche Proteasen eindeutig. Dabei wird die Reihenfolge RD > CL > FP >>> CB gefunden. Der beste Inhibitor für alle Enzyme ist die Substanz 116C (BOC-(S)-Leu-(S)-Azy-(S,S)-Azi(OBn)2), für die Hemmkonstanten im unteren micromolaren bzw. sogar nanomolaren Bereich gefunden werden. Unter den Substanzen finden sich auch einige, die für einzelne Enzyme selektiv sind. Für CL sind es die Verbindungen 517C, 105G, Z-023B, 023A; für CB 034A und 013B und für RD 112C, 222C, 105B, 013A. Dabei gibt es zwei Inhibitoren (105A, 517G), die selektiv nur die parasitären Enzyme FP und RD hemmen. Die Analyse der Struktur-Wirkungs-Beziehungen ergab, dass in Abhängigkeit von den Substituenten am Aziridinring (Benzylester, Ethylester, Disäure), von den Substituenten am Aziridin-Stickstoff (Phe-Ala, Leu-Xxx, Gly-Xxx, Xxx = cyclische Aminosäure) und der Stereochemie unterschiedliche Bindungsmodi vorliegen müssen. Erste Docking-Versuche, die in Kooperation mit der Arbeitsgruppe Baumann (Institut für Pharmazie und LMC, Universität Würzburg) durchgeführt wurden, bestätigen dies. Postuliert wird für Inhibitoren, die die Sequenz Leu-Pro enthalten, eine Bindung an die S`- Seite von Cathepsin L. Dies erklärt die Selektivität dieser Inhibitoren, denn innerhalb der S`-Substratbindungstaschen finden sich die größten strukturellen Unterschiede zwischen Cathepsin B und den Cathepsin-L-ähnlichen Proteasen. Im Gegensatz dazu wird für eines der Phe-Ala-Derivate eine Bindung an die S-Taschen postuliert, die zwischen den einzelnen Proteasen geringere strukturelle Unterschiede aufweisen. Dieser Inhibitor hemmt, wie fast alle Phe-Ala-Derivate, dementsprechend auch Cathepsin B besser als die Leu-Xxx-Derivate. In Rahmen einer Kooperation mit der Arbeitsgruppe Engels Institut für Organische Chemie, Universität Würzburg) wurden quantenchemische Rechnungen durchgeführt, die u.a. den Einfluss von Substituenten auf die Kinetik und Thermodynamik der nucleophilen Ringöffnung untersuchten. Vorhergesagt wurde, dass Substituenten am Aziridin-Stickstoff, die den Übergangzustand stabilisieren (N-Formyl), zu einer besseren Hemmung führen sollten. Das darauf hin synthetisierte N-Formylaziridin-2,3-dicarboxylat 008B weist eine etwa 5000x bessere Hemmung von CL auf als das nicht-formylierte Diethylaziridin-2,3-dicarboxylat. Die gezielt als "affinity label" entwickelte Biotin-markierte Verbindung 999C wurde zur Identifizierung von Cystein-Proteasen, die von Plasmodium falciparum exprimiert werden, eingesetzt (Kooperation mit der Arbeitsgruppe Gelhaus/Leippe, Institut für Zoologie, Universität Kiel). N2 - Mammalian and parasitic cysteine proteases have been discovered as potential drug targets within the last two decades. The physiological and pathophysiological functions of this huge and growing family of proteases are not yet known in detail. However, their role is no longer considered to be only unspecific protein degradation. The goal of the present work was the syntheses of a series of peptidomimetic cysteine protease inhibitors containing aziridine-2,3-dicarboxylate as electrophilic fragment, and the testing of the synthesized compounds on the cysteine proteases cathepsin B (human), cathepsin L (Paramecium tetraurelia), falcipain 2 (Plasmodium falciparum), and rhodesain (Trypanosoma brucei rhodesiense. The compounds are designed as irreversible protease inhibitors. The aziridine ring represents an electophilic building block which is attacked by the cysteine residue of the proteases` active sites. As a consequence, the nucleophilic ring opening reaction leads to irreversible enzyme alkylation. The aziridine building blocks were synthesized stereoselectively in a chiral pool synthesis starting from tartrates, and as racemates starting from fumarates, respectively. NMR spectroscopic studies were used to clarify the mechanism of epimerization occurring during the synthesis of the azido alcohols which are intermediates of the stereoselective synthetic route. The N-acylation of the aziridines with amino acids or dipeptides was carried out via segment or subsequent peptide coupling. Various methods of peptide chemistry were used. The inhibition constants were determined in fluorimetric microplate enzyme assays with inhibitor concentrations between 0.35-140 µM. In all cases, the substrate Z-Phe-Arg-AMC was used. The irreversibility of inhibition was proven by dialysis assays, and by affinity labelling of CL and falcipain using a biotinylated inhibitor. The alkylation rate constant ki was determined in cases where time-dependent inhibition could be observed. In comparison to epoxysuccinyl peptides the ki -values are lower by three orders of magnitude confirming previous investigations. The Ki values unambiguously show that the compounds exhibit a selectivity for the CL-like enzymes. The order of inhibition potency is RD > CL > FP >>> CB. The most potent inhibitor is 116C (BOC-(S)-Leu-(S)-Azy-(S,S)-Azi(OBn)2) with inhibition constants in the submicromolar and even nanomolar range. Some compounds exhibit selectivity for single enzymes: CL: 517C, 105G, Z-023B, 023A; CB: 034A, 013B; RD: 112C, 222C, 105B, 013A. Compounds 105A and 517G selectively inhibit the parasitic proteases FP and RD. The analysis of the structure-activity-relationship led to the assumption that different binding modes have to exist in dependence on the aziridine ring substituents (benzyl ester, ethyl ester, diacid), of the aziridine nitrogen substituents (Phe-Ala, Leu-Xxx, Gly-Xxx, Xxx = cyclic amino acid), and of the stereochemistry, respectively. First docking experiments, performed in cooperation with Dr. Baumann`s group (Institue of Pharmay and Food Chemistry, University of Wuerzburg), confirm this assumption. Inhibitors containing a Leu-Pro sequence are predicted to bind into the S`-subsites of CL. Since the most striking structural difference between CB and CL-like proteases is found within these S`-subsites the selectivity between the enzymes may be due to binding into these subsites. In contrast, for a Phe-Ala derivative the docking postulates binding into the S-subsites which do not differ much between the enzymes. As a consequence, CB is inhibited much better by Phe-Ala-derivatives than by Leu-Xxx-derivatives. In cooperation with Prof. Engels` group (Institute of Organic Chemistry, University of Wuerzburg) quantumchemical computations were performed analyzing the influence of substituents on the thermodynamics and kinetics of the nucleophilic ring opening. These calculations predicted that substituents stabilizing the transition state (N-formyl) should improve inhibition potency. In order to proof this predicition the compound 008B (N-formyl aziridine-2,3-dicarboxylate) was synthesized and tested. Indeed, the compound is about 5000x more potent on CL than the non-formylated diethyl aziridine-2,3-dicarboxylate. The principal mechanism of inhibition - the nucleophilic ring opening - was proven in a model reaction by means of NMR spectroscopy and mass spectrometry. The biotinylated compound 999C was designed as an affinity labelling inhibitor usable to label and to identify cysteine proteases expressed by Plasmodium falciparum (cooperation with the group of Dr. Gelhaus, Prof. Leippe, Institute of Zoology, University of Kiel). KW - Aziridine KW - Cysteinproteasen KW - Inhibitor KW - Cystein KW - Protease KW - irreversibel KW - Aziridin KW - Cathepsin KW - cystein KW - protease KW - irreversible KW - aziridin KW - cathepsin Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11127 ER - TY - THES A1 - Schulz, Franziska T1 - Synthese und Testung von Aziridin-2-carboxylaten als Cystein-Protease-Inhibitoren T1 - synthesis and testing of aziridine-2-carboxylates as inhibitors of cysteine proteases N2 - Das Ziel der vorliegenden Arbeit war es, eine neue Struktur abgeleitet von den potenten Aziridin-2,3-dicarboxylaten zu synthetisieren und diese dann an verschiedenen humanen und parasitären Cystein-Proteasen zu testen. Dafür wurde als Baustein die Aziridin-2-carbonsäure gewählt, die an C3-Position unsubstituiert ist und an C2-Position eine Carboxyl-Funktion trägt. Außerdem sollte der Ringstickstoff im Gegensatz zu den bisher bekannten N-acylierten Aziridin-2,3-dicarboxylaten basische Eigenschaften besitzten. Die Struktur der synthetisierten Azridin-2-carboxylate ist daher wie folgt gewählt worden: Die durch Cromwell-Synthese erhaltenen Verbindungen wurden als Racemate oder als Diastereomerengemische erhalten. Dabei wurden die Diastereomeren-Verhältnisse der einzelnen Verbindungen über die Integrale in den 1H-NMR-Spektren bestimmt. Die an Position R3 mit einer Aminosäure substituierten Aziridin-2-carboxylate wurden durch eine Modifikation der Cromwell-Synthese erhalten. Es wurden insgesamt 27 Azridin-2-carboxylate synthetisiert, die dann an verschiedenen Proteasen getestet wurden. Zu den getesteten Cystein-Proteasen gehören die parasitären Enzyme Falcipain 2, 3 und Rhodesain, die virale SARS-CoV Mpro und die humanen Proteasen Cathepsin B und L. Es wurde jeweils ein Screening der Substanzen an den Proteasen durchgeführt. Bei den wirksamen Verbindungen wurden dann die Ki-, ki-, k2nd- oder IC50-Werte bestimmt. Außerdem wurden die Substanzen auch an der SAP2, einer Aspartat-Protease aus Candida albicans, getestet, an der sie allerdings kaum eine Hemmwirkung zeigten. Bei den nicht-selektiven Inhibitoren stellte sich die Verbindung 9.1a, die auch an Rhodesain eine gute Aktivität besitzt, als ein noch potenterer Inhibitor heraus. Hauptsächlich zeigten an Rhodesain Verbindungen eine gute Hemmwirkung, die Nε- oder Nα-geschütztes Lysin-, Phenylalanin- oder Asparaginsäureester als Substituenten enthalten. Dabei waren die Verbindungen 9.1a/b, 4.9b und 4.8a/b die potentesten Inhibitoren am Rhodesain und 9.1b, 9.2, 4.4b und 4.8b an Falcipain 2 und 3. An der SARS-CoV Mpro hemmte die Verbindung 9.1b am besten. Es wurde weiterhin die Abhängigkeit der Aktivität der parasitären Cystein-Protease Rhodesain vom pH-Wert bestimmt, indem die Fluoreszenzzunahme durch die hydrolytische Spaltung des Substrates durch das Enzym bei pH-Werten zwischen 2.5 und 8.0 über 30 min vermessen wurde. Dabei zeigte sich, dass das Rhodesain in einem sehr weiten pH-Bereich von 3.0 – 8.0 eine sehr hohe Aktivität aufweist (80 – 100 %) und erst im relativ sauren Bereich bei pH 2.5 die Aktivität nachlässt (~ 60 %). Außerdem wurde auch die Hemmung von Rhodesain durch 9.1b in Abhängigkeit vom pH-Wert analysiert, wobei die Hemmstärke im sauren pH-Bereich durch die Protonierung des Stickstoffes des Aziridinringes sehr stark zunahm. Im Rahmen des SFB630 („Erkennung, Gewinnung und funktionale Analyse von Wirkstoffen gegen Infektionskrankheiten“) konnten viele der synthetisierten Verbindungen an verschiedenen Krankheitserregern, wie Trypanosoma brucei brucei, Leishmania major, sowie an sog. Problemkeimen, zu denen die gram-negativen Erreger Pseudomonas aeruginosa und Escheria coli, sowie die gram-positiven Staphylococcus-Arten S. aureus (Linie 325, 8325) und S. epidermidis (Linie RP62) gehören, untersucht werden. Dabei stellten sich die Verbindungen 9.1a/b an Trypanosoma brucei brucei als wirksame Inhibitoren gegen den Erreger heraus. Dies korreliert auch sehr gut mit der hohen Aktivität der beiden Verbindungen gegen Rhodesain (9.1a: Ki: 15.41 µM; 9.1b: Ki: 2.99 µM), wobei die Verbindung 9.1b allerdings an Makrophagen toxisch wirkte (9.1b: IC50: 80 µM). Außerdem war 9.1b auch ein Inhibitor des Wachstumes und der Biofilmbildung von S. aureus. Gegenüber Plasmodium falciparum zeigten die Verbindungen 4.9a/b (4.9a: IC50: 0.5 µM; 4.9b: IC50: 2.2 µM) und 9.4 (9.4: IC50: 1.7 µM) die größte Aktivität, wobei allerdings diese Verbindungen keine Hemmung an den Falcipainen aufwiesen und somit das Target der Inhibition noch ungeklärt ist. Im Rahmen eines Auslandsaufenthaltes in der Arbeitsgruppe von Prof. Dr. Philip Rosenthal, San Francisco, California, wurde außerdem ein Screening verschiedener im Arbeitskreis synthetisierter Substanzklassen an Falcipain 2, 3 und an Plasmodium falciparum durchgeführt. Die dabei getesteten Substanzklassen sind in Abb. 6.1 aufgezeigt. Die Aziridin-2,3-dicarboxylate II-c, I-v und I-j zeigten dabei die beste Aktivität, sowohl an den Falcipainen als auch an dem Parasiten. Unter den Epoxiden und an Position C3 substituierten Aziridin-2-carboxylaten ist die Verbindung IV-2 die einzige, die eine Hemmwirkung aufweist. Unter den anderen getesten Verbindungen zeigten nur die Ethacrynsäure-Derivate VII-b und VII-f eine antiplasmodiale Aktivität. N2 - The goal of the present work was the syntheses of a new structure derived from the aziridine-2,3-dicarboxylate motif, and the testing against different human and parasitic cysteine proteases. Therefore we chose the aziridine-2-carboxylate motif as building block which is unsubstituted at position C3 of the azridine ring and substituted with a carboxyl function at position C2. In addition to this, the nitrogen of the ring should have basic properties in opposite to the common N-acylated aziridine-2,3-dicarboxylates. The compounds were obtained as racemic or diastereomeric mixtures by the Cromwell synthesis. The diastereomeric excesses were determined by analysis of the integrals of the signals of the ring protons in the 1H-NMR spectra. The aziridine-2-carboxylates substituted with an amino acid ester at position R3 were synthesized by a modification of the Cromwell synthesis. Overall, 27 new aziridine-2-carboxylates were synthesized as new potential irreversible inhibitors of cysteine proteases. The aziridine-2-carboxylates were tested against the parasitic cysteine proteases falcipain 2 and 3 and rhodesain, the viral SARS-CoV Mpro and the human enzymes cathepsin B and L. First, we screened the aziridine-2-carboxylates to identify new potential agents against the proteases. Then we determined the inhibition constants Ki, ki, k2nd or IC50 for the most potent compounds. Against the aspartatic protease SAP2 from Candida albicans the aziridine-2-carboxylates showed no activity. In order to determine the inhibition constants we chose the continuous assay according to Tian and Tsou. The inhibition constants against SARS-CoV Mpro and SAP2 were determined using a FRET assay. Within the non-selective inhibitors the compound 9.1a was identified as a very potent inhibitor of cathepsin L and rhodesain. Compounds showing activity against rhodesain are the Nε- or Nα-protected lysine, phenylalanine or aspartic acid derivatives. Thus, the aziridine-2-carboxylates 9.1a/b, 4.9b and 4.8a/b were the most potent inhibitors against rhodesain and 9.1b, 9.2, 4.4b and 4.8b against falcipain 2 and 3. Against the SARS-CoV Mpro the compound 9.1b showed the highest activity. In order to analyse the pH-dependency of hydrolytic activity of the parasitic cysteine protease rhodesain we determined the activity of the enzyme in dilution assays measuring the increase of the fluorescence at different pH values between 2.5 and 8.0. Rhodesain was active in a wide pH range from 3.0 – 8.0 (80 – 100 %) with decreased activity at pH 2.5 (~ 60 %). In addition to this, we determined the pH-dependence of the inhibition constants of 9.1b against rhodesain. We found that the inhibition potency increased at an acid pH range due to the protonation of the basic nitrogen of the aziridine ring. Within the framework of the Collaborative Research Centre SFB 630 most compounds were examined for the activity against various pathogens: Trypanosoma brucei brucei, Leishmania major, the gramnegative bacteria Pseudomonas aeruginosa and Escheria coli, as well as grampositive Staphylococcus strains S. aureus (Linie 325, 8325) and S. epidermidis (line RP62). Tests against Trypanosoma brucei brucei revealed some active compounds which are not cytotoxic against the host cells, the macrophages (IC50 > 100 µM). The best compounds against this pathogen were 9.1a/b (9.1a: Ki: 15.41 µM; 9.1b: Ki: 2.99 µM). These results correlate well with the inhibition constants of this compounds against rhodesain, but unfortunaly 9.1b showed cytotoxity against the macrophages (9.1b: IC50: 80 µM). Furthermore, 9.1b inhibited the growth and biofilm production of S. aureus. The compounds 4.9a/b (4.9a: IC50: 0.5 µM; 4.9b: IC50: 2.2 µM) and 9.4 (9.4: IC50: 1.7 µM) showed the highest activity against Plasmodium falciparum, but unfortunaly they did not inhibit falcipain 2 or 3 and so the target of the inhibition of the pathogen is uncertain. Within the framework of another collaboration with the working group of Prof. Dr. Philip Rosenthal, San Francisco, California, I determined the inhibition constants of series of different compounds (scheme 6.1) against falcipain 2, falcipain 3 and Plasmodium falciparum. The aziridine-2,3-dicarboxylates II-c, I-v and I-j showed the highest activity both against the falcipains and the pathogen Plasmodium falciparum. Within the series of epoxides and the aziridine-2-carboxylates substituted at position 3 only the compound IV-2 showed activity against the pathogen. Besides this, the ethacrynic acid derivates VII-b and VII-f showed a high antiplasmodial activity. KW - Aziridine KW - Cysteinproteasen KW - Inhibitor KW - Aziridin-2-carboxylate KW - Cystein-Proteasen KW - Inhibitor KW - aziridine KW - cysteine proteases KW - inhibitors Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19891 ER - TY - THES A1 - Degel, Björn T1 - Synthese und Testung elektrophiler Verbindungen als Inhibitoren der sekretorischen Aspartat-Proteasen (SAPs) von Candida albicans T1 - Synthesis and testung of electrophilic compounds as inhibitors of the secreted aspartic proteases (SAPs) of Candida albicans N2 - In den letzten Jahren haben Pilzinfektionen zugenommen und bakterielle Infektionen nahezu überholt, wofür vor allem der massive Einsatz von Medikamenten sowie operative Eingriffe verantwortlich sind. Einer der gefährlichsten Auslöser schwerer Pilzinfektionen, die innere Organe schädigen und sehr schwer zu behandeln sind, ohne dabei den Wirtsorganismus zu schädigen, ist der opportunistische Hefepilz Candida albicans. Da aufgrund der immer größer werdenden Zahl von Resistenzen von Candida albicans nur ein relativ kleines Repertoire für die Therapie zur Verfügung steht, war das Ziel der vorliegenden Arbeit die Synthese einer Reihe peptidischer Inhibitoren mit elektrophilen Bausteinen als potentielle irreversible Inhibitoren der sekretorischen Aspartat-Proteasen (SAPs) des Hefepilzes Candida albicans und deren Testung an dem am stärksten exprimierten SAP-Isoenzym SAP2 sowie anderen Proteasen. Dabei sollte geklärt werden, ob neben der HIV-1-Protease auch andere Aspartat-Proteasen durch cis-konfigurierte Epoxide irreversibel hemmbar sind, ob andere elektrophile Ringe sowie elektronenarme Michael-Systeme in der Lage sind, als irreversible Aspartat-Protease-Inhibitoren zu fungieren, und ob die Z-Konfiguration der Olefine für die Hemmung von Aspartat-Proteasen ebenso wichtig ist wie die cis-Konfiguration bei Epoxiden. Die Aziridin-2-carboxylat-Bausteine wurden als Racemate über Cromwell-Synthese gewonnen und die Aziridin-2,3-dicarboxylat-Bausteine stereoselektiv aus Tartraten dargestellt. Die Oxiran-2-carboxylat-Bausteine wurden enantioselektiv ausgehend von Threonin bzw. als Racemate über Darzens-Glycidester-Synthese dargestellt. Die Synthese der Oxiran-2,3-dicarboxylat-Bausteine gelang mittels tertButylhydroperoxid / BuLi aus den Maleaten. Die Z-Olefinbausteine wurden durch Kupplung von Alkoholen bzw. AS an Maleinsäureanhydrid erhalten oder über Wittig- bzw. Horner-Wadsworth-Emmons-Reaktion dargestellt. Die Kupplung von AS bzw. Peptiden an die elektrophilen Bausteine erfolgte mit gängigen AS- / Peptidkupplungsmethoden. Die als irreversible Inhibitoren der SAP2 konzipierten Verbindungen wurden in einem neu entwickelten fluorimetrischen FRET-Assay auf ihre SAP2-Hemmung getestet. Dazu wurde ein Verdünnungsassay nach Kitz und Wilson durchgeführt und die zunehmende Fluoreszenz durch das Spaltprodukt der enzymatischen Hydrolyse des Substrats bei 540 nm detektiert (Anregung 355 nm). Als Substrat diente das Undecapeptid Dabcyl-Arg-Lys-Pro-Ala-Leu-Phe / Phe-Arg-Leu-Glu(EDANS)-ArgOH (/ markiert die Spaltstelle). Von den Inhibitoren wurden IC50-, k2nd- und, falls möglich, ki- und Ki-Werte ermittelt. Von den 41 an der SAP2 getesteten AS- / Peptid-verknüpften Verbindungen stellen die beiden Aziridine A-07 und A-08 mit k2nd-Werten im mittleren fünfstelligen Bereich [M-1min-1] die besten Inhibitoren dar. Bis auf zwei Verbindungen zeigen alle aktiven Verbindungen an der SAP2 sinkende IC50-Werte bei längerer Inkubationszeit und somit eine zeitabhängige und irreversible Hemmung. Zur Untersuchung der Selektivität wurden die Verbindungen mittels kontinuierlicher Assays an den Cystein-Proteasen Cathepsin B (human), Cathepsin L (Paramecium tetraurelia) und Rhodesain (Trypanosoma brucei rhodesiense) getestet. Als Substrat wurde dabei Cbz-Phe-Arg-AMC verwendet. Erfreulicherweise waren bis auf das E-konfigurierte Olefin E-Ol-04 alle Verbindungen an den Cystein-Proteasen inaktiv. Die Ergebnisse zeigen, dass neben den HIV-Proteasen auch die sekretorische Aspartat-Protease SAP2 durch cis-konfigurierte Epoxide irreversibel hemmbar ist. Desweiteren zeigt sich, dass mit Aziridinen auch andere elektrophile Ringe als irreversible Aspartat-Protease-Inhibitoren fungieren können. An der SAP2 zeigen sich die Aziridine sogar aktiver. Auch elektronenarme Michael-Systeme sind in der Lage Aspartat-Proteasen zu hemmen, auch wenn ihre Hemmung deutlich schwächer ist als die der Aziridine. Die Ergebnisse zeigen jedoch, dass nicht, wie angenommen, die Z-Konfiguration der Olefine entscheidend ist, sondern dass E-Olefine sogar bessere Hemmungen aufweisen. In Kooperation mit der Arbeitsgruppe von Prof. Dr. Joachim Morschhäuser und Dr. Peter Staib vom Institut für Molekulare Infektionsbiologie der Universität Würzburg, konnte gezeigt werden, dass die Aziridine A-07 und A-08 neben dem isolierten Enzym auch die SAP2-Produktion in Candida albicans-Zellkulturen hemmen ohne auf die Pilzzellen toxisch zu wirken. Neben der Hemmung der SAP2 wirken die Aziridine A-07 und A-08 auch antiplasmodial. Bei Testungen am Malaria-Erreger Plasmodium falciparum zeigten beide Aziridine einen IC50-Wert im unteren mikromolaren Bereich. Der Grund der Hemmung des Parasiten ist jedoch noch unklar, da A-07 und A-08 weder an den isolierten Cystein-Proteasen des Malaria-Erregers Falcipain 2 und 3 aktiv sind, noch dessen Aspartat-Protease Plasmepsin II hemmen. N2 - Over the last years fungal infections have increased dramatically and now nearly exceed the number of bacterial infections. Reasons are the massive use of antibiotics and the increasing number of surgeries. One of the most serious pathogens that causes superficial as well as severe systemic infections, which are difficult to treat without affecting the host organism, is the opportunistic fungal pathogen Candida albicans. Due to an increase of resistances of Candida species towards antifungal drugs only a limited repertoire of drugs is available for systemic therapy. The goal of the present work was the synthesis of series of peptide inhibitors containing electrophilic building blocks as potential irreversible inhibitors of the secreted aspartic proteases (SAPs) of Candida albicans. The synthesized compounds should be tested against SAP2, which is the mostly expressed SAP-isoenzyme, and other proteases. This work should elucidate whether cis-configured epoxides can be used to irreversibly block other aspartic proteases than the HIV-1-protease and whether other small electrophilic building blocks like aziridines and electron poor Michael acceptor systems can react as irreversible inhibitors of aspartic proteases as well. Additionally, the role of the configuration of the Michael systems (Z / E) for inhibition potency should be investigated. The aziridine-2-carboxylates were obtained as racemates by Cromwell synthesis and the aziridine-2,3-dicarboxylates were synthesized stereoselectively by a chiral pool synthesis starting from tartrates. The oxirane-2-carboxylates were synthesized enantioselectively starting from threonine or were obtained as racemates by Darzens glycide ester synthesis. The oxirane-2,3-dicarboxylates were obtained by Weitz-Schäffer epoxidation of maleates with tertbutylhydroperoxide / butyllithium. The Z-configured olefinic building blocks were synthesized by reactions of alcohols or amino acids with maleinic anhydride or by Wittig and Horner-Wadsworth-Emmons reactions. The electrophilic building blocks obtained by these pathways were coupled with amino acids and peptides using known methods of peptide chemistry. The compounds which were designed as irreversible aspartic protease inhibitors were tested for SAP2 inhibition using a newly-developed FRET assay. The inhibition constants (IC50-, k2nd-, ki- and Ki-values) were determined in dilution assays measuring the increase of fluorescence at 540 nm. The undecapeptide Dabcyl-Arg-Lys-Pro-Ala-Leu-Phe / Phe-Arg-Leu-Glu(EDANS)-ArgOH (/ designates the cleavage site) was used as substrate. Within the series of 41 synthesized compounds the aziridines A-07 and A-08 exhibiting k2nd-values of about 50000 M-1min-1 were found to be the most active inhibitors. With the exception of two compounds all inhibitors showed time-dependent inhibition indicating irreversible inactivation of the target enzyme. In order to elucidate the selectivity the compounds were tested against the cysteine proteases cathepsin B (human), cathepsin L (Paramecium tetraurelia) und rhodesain (Trypanosoma brucei rhodesiense) using a continuous fluorometric microplate assay. In all cases, the substrate Cbz-Phe-Arg-AMC was used. With the exception of the E-configured olefin E-Ol-04 all compounds were found to be inactive against cysteine proteases. In summary, the results prove that besides the HIV-proteases other aspartic proteases like SAP2 can also be inhibited irreversibly by cis-configured epoxides. Furthermore, it is shown that cis-configured aziridines can also be used as building blocks for irreversible inhibitors of aspartic proteases, being even more active against SAP2 than corresponding epoxides. Electron poor Michael acceptor systems can also be used, but they are obviously weaker than the three-membered heterocycles. The results obtained with the olefins show that the E-configured compounds are superior to Z-configured ones. In collaboration with the group of Prof. Dr. Joachim Morschhäuser and Dr. Peter Staib (Department of Molecular Infection Biology, University of Würzburg) it was proven that the aziridines A-07 and A-08, which are the most active inhibitors of the target enzyme, also inhibit SAP2 in Candida albicans cell cultures leading to growth inhibition without being cytotoxic against the fungi. These aziridines (A-07 and A-08) display antiplasmodial activity as well. Tests against the malaria parasite Plasmodium falciparum revealed for both aziridines IC50-values in the low micromolar range. The reasons for the antiplasmodial activity are uncertain at the moment: A-07 and A-08 are only weakly active against the plasmodial cysteine proteases falcipain 2 and falcipain 3 and, furthermore, they do not inhibit the parasitic aspartic protease plasmepsin II. KW - Candida albicans KW - Aspartatproteasen KW - Inhibitorpeptide KW - Aspartat-Proteasen KW - Candida albicans KW - Aziridine KW - Epoxide KW - aspartic proteases KW - Candida albicans KW - aziridines KW - epoxides Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18339 ER - TY - THES A1 - Büchold, Christian T1 - Synthese und Testung cis-konfigurierter Aziridine als pseudo-irreversible Inhibitoren der sekretorischen Aspartatproteasen von Candida albicans T1 - Synthesis and testing of cis-configured aziridines as pseudo-irreversible inhibitors of Candida albicans secreted aspartic proteases N2 - Candida albicans gehört zu den für den Menschen fakultativ pathogenen Hefepilzen. Der normalerweise harmlose Begleiter der humanen Mikroflora findet sich hauptsächlich auf Schleimhäuten der Mundhöhle und des Magen-Darm-Trakt sowie in der vaginalen Flora. Menschen, deren Immunsystem geschwächt ist, sind jedoch besonders anfällig für Infektionen, die durch den Pilz hervorgerufen werden können. Neben oberflächlichen kann es dabei auch zu lebensbedrohlichen systemischen Infektionen kommen, die nicht selten zum Tod des Patienten führen. Durch ein zunehmendes Auftreten von Resistenzen gegen gebräuchliche Pharmaka besteht aktuell ein dringender Bedarf an neuen Wirkstoffen gegen Candida. Die zehn vom Hefepilz exprimierten sekretorischen Aspartatproteasen (SAP1-10), die als wichtige Virulenzfaktoren gelten, stellten sich dabei zunehmend als vielversprechende Targets heraus. Das Ziel dieser Arbeit war die Weiterentwicklung der literaturbekannten cis-konfigurierten 3-Phenylaziridin-2-carboxylate A-07 und A-08 als irreversible Inhibitoren der SAP-Isoenzyme. Die Variation der Substituenten am Aziridinstickstoff für die Adressierung der S3-Tasche im Enzym erfolgte durch Alkyl-, Aryl- und Acylreste. Die Aminosäureester wurden in Konfiguration und Art der Seitenkette modifiziert, um eine Verbesserung der Anpassung an die S1‘-Tasche zu ermöglichen. Die cis-3-Phenylaziridin-2-carboxylate wurden durch Cromwell-Synthese als Racemate erhalten. Aminosäure- und Peptidkupplungen erfolgten mit gängigen Kupplungsreagenzien (PPA, DPPA). Die stereoselektive Synthese des methylenverbrückten Aziridin-2-carboxylats A-10 erfolgte durch Redoxkondensation nach Mukaiyama. Die synthetisierten Verbindungen wurden in einem fluorimetrischen FRET-Assay auf ihre inhibitorische Wirkung gegen SAP2 getestet. Dabei war das im FRET-Assay bislang an SAP2 verwendete Substrat Dabcyl-Arg-Lys-Pro-Ala-Leu-Phe-Phe-Arg-Leu-Glu(EDANS)-ArgOH auch für Testungen an SAP1, 3 & 8 sowie Cathepsin D geeignet. Neben den jeweiligen Km-Werten konnten für diese Enzyme auch die zugehörigen kcat-Werte bestimmt werden. Zur Bestimmung der Hemmkonstanten wurde für die aktiven Verbindungen ein Verdünnungsassay nach Kitz und Wilson durchgeführt. 20 der 46 Aziridin-2-carboxylate erreichten SAP2 k2nd-Werte von mindestens 7880 M-1min-1. Die mit k2nd-Werten von 60608 bis 118582 M-1min-1 potentesten Verbindungen wurden durch (R)-Aminosäuresubstitution (A-28, A-31) bzw. durch Cyclohexylmethyl-Verknüpfung am Aziridinstickstoff (A-43, A-45) erhalten. Für die einzelnen Diastereomere von A-31, A-31a und A-31b, wurde eine signifikant unterschiedliche Hemmwirkung festgestellt. Die Inhibitoren zeigten eine zeitabhängige Hemmung, die nach ca. 30 min Inkubationszeit jedoch wieder schwächer wurde. LC-MS- und NMR-Studien lassen einen pseudo-irreversiblen Hemmmechanismus vermuten: Der Inhibitor bindet zunächst irreversibel unter Ringöffnung des Aziridins an das Enzym. Der entstehende Ester wird danach unter den sauren Assaybedingungen wieder hydrolysiert. Der resultierende Aminoalkohol bindet anschließend als Übergangszustandsanalogon reversibel an das Enzym. Selektivitätsstudien an Cathepsin D zeigten für 36 der 46 Aziridin-2-carboxylate k2nd-Werte von 10350 bis 936544 M-1min-1. Damit sind die Verbindungen an CathD aktiver als an SAP2. Die 1-Cyclohexylmethyl-verknüpften Aziridine wiesen auch an CathD die höchsten k2nd-Werte auf, wenngleich sich dabei die (R)-Konfiguration der Aminosäurereste (A-57, A-59) als die aktivere Variante herausstellte. Mit dem (R)-Phe-substituierten 1-tert-Butylaziridin A-58 erreichte der potenteste Vertreter der Reihe bereits einen Ki-Wert im dreistelligen nano-molaren Bereich. Ebenso wurden für die (R)-Aminosäure-Analoga von A-07 und A-08 (A-28, A-31) erhöhte Hemmkonstanten erhalten. Wie SAP2 wird auch CathD durch die (an)getrennten Diastereomere A-31a und A-31b signifikant unterschiedlich stark inhibiert. Mit den (R)-Valin-verknüpften Aziridinen A-81, A-82 und A-85 fanden sich aktive verzweigt-Alkyl-substituierte CathD-Inhibitoren. N2 - Candida albicans is one of the most common fungal pathogens of human beings. Usually, Candida species reside as commensal organisms as part of the normal microflora, predomi-nantly colonizing the mucosal surfaces of the oral cavity, the gastrointestinal tract or the va-ginal flora. However, notably in immunosuppressed individuals, C. albicans can evolve into an opportunistic pathogen, causing superficial as well as life-threatening systemic infections with high mortality. Increasing resistances to current drug therapies demand research for new antifungal phar-maceuticals. The secreted aspartic proteases (SAP1-10), encoded by ten different sap genes, were discovered as key virulence factors and hence are considered to be potential targets for new antimycotic drugs. The goal of the present work was the improvement of the known cis-configured 3 phenyl-aziridine-2-carboxylates A-07 und A-08 as irreversible inhibitors of the SAP isoenzymes. In order to address their S3 pocket, the substituent at the aziridine-nitrogen was modified (alkyl, aryl and acyl residues). Furthermore, various amino acid esters (D, L) were included in order to improve their fit into the S1’ pocket. The cis-3-phenylaziridine-2-carboxylates were obtained as racemates via Cromwell synthesis. Amino acid and peptide coupling reactions were performed with common coupling reagents (PPA, DPPA). The stereoselective synthesis of the methylene-bridged aziridine-2-carboxylate A-10 was achieved via redox condensation according to Mukaiyama. The synthesized compounds were tested for inhibition of SAP2 by using a fluorometric FRET assay using Dabcyl-Arg-Lys-Pro-Ala-Leu-Phe-Phe-Arg-Leu-Glu(EDANS)-ArgOH as sub-strate. This substrate, designed for SAP2, was found to be also suitable for assays with SAP1, 3 & 8 and Cathepsin D. Additionally, the corresponding Km- and kcat values were determined. For the determination of the inhibition constants of the active compounds a dilution assay according to Kitz and Wilson was performed. 20 of the 46 aziridine-2-carboxylates yielded k2nd values of at least 7880 M-1min-1 against SAP2. With k2nd values between 60608 and 118582 M-1min-1, the most potent compounds were achieved with (R)-amino acids (A-28, A-31) and by cyclohexylmethyl substitution of the aziridine-nitrogen (A-43, A-45). Significantly different inhibition potencies were found for the single diastereomers of A-31, A-31a and A-31b. The inhibitors showed a time-dependent inhibition that decreased after 30 min incubation time. LC-MS and NMR studies suppose a pseudo-irreversible mechanism of inhibition: First, the inhibitor irreversibly binds to the enzyme under ring opening of the aziridine. Then the generated ester is hydrolyzed under the acidic assay conditions. The resulting amino alcohol subsequently could bind as a transition-state mimetic inhibitor to the enzyme. In selectivity studies on CathD 36 of the 46 aziridine-2-carboxylates showed k2nd values be-tween 10350 and 936544 M-1min-1. Thus, the compounds show higher activity against CathD than against SAP2. Again, the 1-cyclohexylmethyl-substituted aziridines show the highest k2nd values. However, in these cases the compounds with (R)-configured amino acid residues are the more active ones (A-57, A-59). With the (R)-Phe-substituted 1-tert-butylaziridine A-58, the most active compound reached a Ki value in the nanomolar region. Similarly to the results obtained for SAP2, the (R)-amino acid analogues to A-07 und A-08 (A-28, A-31) show higher inhibition constants. Again, the separated diastereomers A-31a and A-31b display significantly different inhibition potencies. With the (R) valin linked aziridines A-81, A-82 and A-85 a highly active group of alkyl-substituted inhibitors with branched side-chains was found. KW - Candida albicans KW - Aspartatproteasen KW - Enzymkinetik KW - Enzyminhibitor KW - Plasmodium falciparum KW - Malaria KW - Würzburg / Sonderforschungsbereich Erkennung KW - Gewinnung und Funktionale Analyse von Wirkstoffen gegen Infektionskrankheiten KW - Hefeartige Pilze KW - sekretorische Aspartatproteasen KW - Aziridine KW - irreversible Inhibitoren KW - secreted aspartic proteases KW - aziridines KW - irreversible inhibitors Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39358 ER -