TY - THES A1 - Weißenseel, Sebastian Günter T1 - Spin-Spin Interactions and their Impact on Organic Light-Emitting Devices T1 - Spin-Spin-Wechselwirkungen und ihre Einflüsse auf organische Leuchtdioden N2 - This work investigates the correlations between spin states and the light emission properties of organic light-emitting diodes (OLEDs), which are based on the principle of thermally activated delayed fluorescence. The spin-spin interactions responsible for this mechanism are investigated in this work using methods based on spin-sensitive electron paramagnetic resonance (EPR). In particular, this method has been applied to electrically driven OLEDs. The magnetic resonance has been detected by electroluminescence, giving this method its name: electroluminescence detected magnetic resonance (ELDMR). Initial investigations on a novel deep blue TADF emitter were performed. Furthermore, the ELDMR method was used in this work to directly detect the spin states in the OLED. These measurements were further underlined by time-resolved experiments such as transient electro- and photoluminescence. N2 - Diese Arbeit untersucht die Zusammenhänge zwischen Spinzuständen und den Lichtemissions Eigenschaften von Organischen Leuchtdioden (OLEDs), welche auf dem Prinzip der thermisch aktivierten verzögerten Fluoreszenz basieren. Die für diesen Mechanismus verantwortlichen Spin-Spin-Wechselwirkungen werden im Rahmen der Arbeit mit Methoden untersucht, die auf der spinsensitiven Elektron Paramagnetische Resonanz (EPR) basieren. Insbesondere wurde diese Methode auf elektrisch betriebene OLEDs angewendet und die magnetische Resonanz durch Elektrolumineszenz nachgewiesen, was dieser Methode ihren Namen verleiht: Elektrolumineszenz detektierte magnetische Resonanz (ELDMR). Erste Untersuchungen an einem neuartigen tiefblauen TADF-Emitters wurden durchgeführt. Ebenfalls konnte in dieser Arbeit mit Hilfe der ELDMR-Methode direkt die Spinzustände in der OLED detektiert werden. Unterstützt wurden diese Messungen von Zeit-aufgelösten Experimenten wie transiente Elektro- und Photolumineszenz. KW - Elektronenspinresonanz KW - Technische Optik KW - Nanometerbereich KW - Organische Leuchtdioden KW - OLED Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257458 ER - TY - THES A1 - Stahlhut, Philipp T1 - Konzeption und Aufbau einer Nanofokus Labor CT Anlage in Reflexionsgeometrie auf Basis eines Rasterelektronenmikroskops T1 - Design and construction of a nanofocus laboratory CT system in reflection geometry based on a scanning electron microscope N2 - In der vorliegenden Arbeit werden die Konzeption und Realisierung eines Computertomographen zur Materialanalyse auf Basis eines Rasterelektronenmikroskops mit einem räumlichen Auflösungsvermögen im Nanometerbereich diskutiert. Durch einen fokussierten Elektronenstrahl, der mit einer Beschleunigungsspannung von 30 kV auf eine mikrostrukturierte Wolframnadel mit einem Spitzenradius von bis zu 50 nm gezielt wird, entsteht ein kleiner Röntgenbrennfleck über den mit geometrischer Vergrößerung hochauflösende Projektionen eines zu untersuchenden Objekts erzeugt werden. Durch Rotation des Testobjekts werden Projektionen aus verschiedenen Blickwinkeln aufgenommen und über einen speziellen Rekonstruktionsalgorithmus zu einem 3-dimensionalen Bild zusammengefügt. Bei der Beurteilung der Einzelkomponenten des Geräts wird insbesondere auf Struktur, Form und den elektrochemischen Herstellungsprozess der Röntgenquelle eingegangen. Eine ausreichend genaue Positionierung von Messobjekt und Röntgenbrennfleck wird über Piezoachsen realisiert, während die Stabilität des Röntgenbrennflecks über die Elektronenoptik des Rasterelektronenmikroskops und die Form der Quellnadel optimiert wird. Das räumliche Auflösungsvermögen wird über die Linienspreizfunktion an Materialkanten abgeschätzt. Für eine Wolfram-Block-Quelle ergibt sich dabei ein Auflösungsvermögen von 325 nm – 400 nm in 3D, während der Quellfleck einer Wolframnadel das Auflösungsvermögen der Anlage auf 65 nm – 90 nm in 2D und 170 nm – 300 nm in 3D bei Messungen an einem AlCu29-Testobjekt anhebt. Außerdem werden die Auswirkungen der Phasenkontrastcharakteristik der Röntgenquelle auf die rekonstruierten Bilder nach Anwendung eines Paganin-Filters diskutiert. Dabei zeigt sich, dass durch Anwendung des Filters ein verbessertes Signal-zu-Rausch-Verhältnis auf Kosten der räumlichen Bildauflösung erzielt werden kann. Eine Vergleichsmessung mit einem kommerziell verfügbaren Röntgenmikroskop zeigt die Stärken des vorgestellten Systems bei Untersuchung von stark absorbierenden Messobjekten. Das kompakte Design erlaubt eine Weiterentwicklung in Richtung eines nanoCT-Moduls als Upgrade Option für Rasterelektronenmikroskope im Gegensatz zu den weitaus teureren bisher verbreiteten nanoCT-Geräten. N2 - The presented thesis discusses the conceptual design and realization of a computed tomography system for material analysis based on a scanning electron microscope with a spatial resolution in the nanometer range. A focused electron beam accelerated through a field of 30 kV aimed at a microstructured tungsten needle with a tip radius of up to 50 nm creates a small X-ray focal spot enabling high-resolution projections of an object via geometric magnification. By rotating the object, projections from different angles are recorded and combined into a 3-dimensional image using a special reconstruction algorithm. When assessing the individual components of the device, particular attention is paid to the structure, shape and the electrochemical manufacturing process of the X-ray source. Sufficiently accurate positioning of the sample and the X-ray focal spot is realized via piezo axes, while the stability of the focal spot is optimized via the electron optics of the scanning electron microscope and the shape of the source needle. The spatial resolution is estimated via the line spread function at material edges. For a tungsten block source, this results in a spatial resolution of 325 nm – 400 nm in 3D, while the source spot of a tungsten needle increases the spatial resolution of the system to 65 nm – 90 nm in 2D and 170 nm – 300 nm in 3D for measurements on an AlCu29 test object. In addition, the effects of the phase contrast characteristics of the X-ray source on the reconstructed images after applying a Paganin phase retrieval filter are discussed. It is shown that by applying the filter, an improved signal-to-noise ratio can be achieved at the expense of spatial image resolution. Comparable measurements with a commercially available X-ray microscope shows the strengths of the presented system when investigating strongly absorbing samples. The compact design allows development towards a nanoCT-module as an upgrade option for scanning electron microscopes, reaching a similar resolution as the nanoCT-devices that are commercially available up to now but at reduced costs. KW - Computertomographie KW - Rasterelektronenmikroskopie KW - Nanometerbereich KW - Laborgerät KW - Materialanalytik KW - Reflexionsgeometrie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302648 ER - TY - THES A1 - Ochs, Maximilian Thomas T1 - Electrically Connected Nano-Optical Systems: From Refined Nanoscale Geometries to Selective Molecular Assembly T1 - Elektrisch Kontaktierte Nano-Optische Systeme: Von Komplexen Geometrien bis zur Gezielten Oberflächenmodifikation N2 - Metallic nano-optical systems allow to confine and guide light at the nanoscale, a fascinating ability which has motivated a wide range of fundamental as well as applied research over the last two decades. While optical antennas provide a link between visible radiation and localized energy, plasmonic waveguides route light in predefined pathways. So far, however, most experimental demonstrations are limited to purely optical excitations, i.e. isolated structures are illuminated by external lasers. Driving such systems electrically and generating light at the nanoscale, would greatly reduce the device footprint and pave the road for integrated optical nanocircuitry. Yet, the light emission mechanism as well as connecting delicate nanostructures to external electrodes pose key challenges and require sophisticated fabrication techniques. This work presents various electrically connected nano-optical systems and outlines a comprehensive production line, thus significantly advancing the state of the art. Importantly, the electrical connection is not just used to generate light, but also offers new strategies for device assembly. In a first example, nanoelectrodes are selectively functionalized with self-assembled monolayers by charging a specific electrode. This allows to tailor the surface properties of nanoscale objects, introducing an additional degree of freedom to the development of metal-organic nanodevices. In addition, the electrical connection enables the bottom-up fabrication of tunnel junctions by feedback-controlled dielectrophoresis. The resulting tunnel barriers are then used to generate light in different nano-optical systems via inelastic electron tunneling. Two structures are discussed in particular: optical Yagi-Uda antennas and plasmonic waveguides. Their refined geometries, accurately fabricated via focused ion beam milling of single-crystalline gold platelets, determine the properties of the emitted light. It is shown experimentally, that Yagi-Uda antennas radiate light in a specific direction with unprecedented directionality, while plasmonic waveguides allow to switch between the excitation of two propagating modes with orthogonal near-field symmetry. The presented devices nicely demonstrate the potential of electrically connected nano-optical systems, and the fabrication scheme including dielectrophoresis as well as site-selective functionalization will inspire more research in the field of nano-optoelectronics. In this context, different future experiments are discussed, ranging from the control of molecular machinery to optical antenna communication. N2 - Nano-optische Systeme ermöglichen es, Licht auf der Nanoskala zu fokussieren und zu leiten - eine faszinierende Fähigkeit, die in den letzten zwei Jahrzehnten ein breites Spektrum an Grundlagen- und angewandter Forschung motiviert hat. Während optische Antennen lokalisierte Energie mit sichtbarer Strahlung verknüpfen, leiten plasmonische Wellenleiter das Licht in vordefinierte Bahnen. Bislang jedoch beschränken sich die meisten Experimente auf isolierte Strukturen, die durch externe Lichtquellen angeregt werden. Die elektrisch getriebene Lichterzeugung auf der Nanoskala reduziert den Platzbedarf dieser Systeme erheblich und ebnet so den Weg für optische Nano-Schaltkreise. Allerdings stellen sowohl die Lichtemission als auch die Kontaktierung der Nanostrukturen erhebliche Herausforderungen dar. In dieser Arbeit werden verschiedene elektrisch kontaktierte nano-optische Systeme vorgestellt. Eine zentrale Rolle spielt dabei die Kontaktierung - nicht nur für die Lichterzeugung, sondern auch für die Fabrikation der jeweiligen Strukturen. In einem ersten Beispiel werden Nanoelektroden durch Anlegen einer Spannung selektiv mit molekularen Monolagen beschichtet. Dadurch können die chemischen und elektronischen Oberflächeneigenschaften von Nanoobjekten maßgeschneidert werden, was einen zusätzlichen Freiheitsgrad bei der Entwicklung von optoelektronischen Nanosystemen darstellt. Darüber hinaus ermöglicht die elektrische Kontaktierung die Herstellung von Tunnelbarrieren mittels Dielektrophorese, was die Lichterzeugung in verschiedenen nano-optischen Systemen durch inelastisches Elektronentunneln ermöglicht. Hier werden zwei Strukturen diskutiert: optische Yagi-Uda-Antennen und plasmonische Wellenleiter. Ihre ausgeklügelten Geometrien, hergestellt aus einkristallinen Goldflocken mittels fokussiertem Ionenstrahl, bestimmen die Eigenschaften des emittierten Lichts. Es wird gezeigt, dass Yagi-Uda-Antennen das Licht gezielt in eine bestimmte Richtung abstrahlen, während plasmonische Wellenleiter das Schalten zwischen zwei propagierenden Moden ermöglichen. Damit demonstriert diese Arbeit das Potenzial von elektrisch kontaktierten nano-optischen Systemen und wird - in Kombination mit Dielektrophorese und selektiver Funktionalisierung - weitere Forschungen auf dem Gebiet der Nano-Optoelektronik anregen. In diesem Zusammenhang werden verschiedene zukünftige Experimente, von der Steuerung molekularer Maschinen bis zur optischen Antennenkommunikation, diskutiert. KW - Nanooptik KW - Antenne KW - Nanometerbereich KW - Wellenleiter KW - Optischer Richtfunk KW - Nanoantenne KW - Nanoantenna KW - Self-assembled Monolayer KW - Nanoscale KW - Optical Antenna KW - Plasmonic Waveguide KW - Optische Antenne KW - Plasmonischer Wellenleiter Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291140 ER - TY - THES A1 - Lutter, Fabian T1 - Elementsensitive Bildgebung - Einsatz chromatischer Pixelarrays in Röntgen nano-CT T1 - Element sensitive imaging - Use of chromatic pixel arrays in X-ray nano-CT N2 - Diese Arbeit befasst sich mit der Weiterentwicklung und Charakterisierung des XRM-II nanoCT Systems, sowie dessen Möglichkeiten zur Materialtrennung und Elementbestimmung in der nano-Computertomographie. Beim XRM-II nanoCT System handelt es sich um ein Röntgenmikroskop, welches in ein Rasterelektronenmikroskop integriert ist, und auf dem Prinzip der geometrischen Vergrößerung basiert. Neben zweidimensionalen Durchstrahlungsbildern ist dieses Mikroskop auch zur dreidimensionalen Bildgebung mittels Computertomographie fähig. Der Ausgangspunkt für die Weiterentwicklung ist das XRM-II, mit welchem bereits Computertomographien im Nanometerbereich möglich waren. Deren Aufnahmedauer liegt zwischen 14 und 21 Tagen, was das System trotz seiner hohen Auflösung wenig praktikabel macht. Durch eine Anpassung der Blendeneinstellungen am Rasterelektronenmikroskop konnte der Strahlstrom um den Faktor 40 erhöht und damit die Aufnahmedauer auf 24 Stunden reduziert werden, wobei weiterhin eine zweidimensionale Auflösung von \(167 \pm 9\) nm erreicht wird. Durch die Trennung von Objekt- und Targetmanipulator lassen sich beide unabhängig und genauer bewegen, wodurch es möglich ist selbst 50 nm große Strukturen abzubilden. Die Charakterisierung erfolgt sowohl für das komplette System als auch getrennt in die entscheidenden Komponenten wie Target und Detektor. Für das Röntgentarget werden Monte-Carlo Simulationen zur Brennfleckgröße, welche entscheidend für die erreichbare Auflösung ist, durchgeführt und mit Auflösungstests verglichen. Der Röntgendetektor wird hinsichtlich seiner spektralen Auflösung überprüft, welche hauptsächlich vom Charge Sharing Effekt beeinflusst wird. Die Charakterisierung des Gesamtsystems erfolgt durch den Vergleich mit einer höher auflösenden Bildgebungsmethode, der FIB Tomographie. Hierbei wird die gleiche Probe, ein Bruchstück einer CPU, mit beiden Methoden unter der Voraussetzung einer ähnlichen Aufnahmezeit (24 h) untersucht. In der nano-CT kann ein 12 mal größeres Volumen analysiert werden, was jedoch eine geringere räumliche Auflösung als die FIB Tomographie mit sich bringt. Da die spektrale Auflösung des Detektors aufgrund des Charge Sharing begrenzt ist, lassen sich nur Materialien mit einem großen Unterschied in der Ordnungszahl mittels der Energieschwellen des Detektors trennen. Jedoch kann in Verbindung mit der geeigneten Wahl des Targetmaterials der Absorptionskontrast für leichte Materialien, wie beispielsweise \(SiO_2\) verbessert werden. Darüber hinaus ist es am XRM-II nanoCT möglich, durch das integrierte EDX-System, Elemente in der Computertomographie zu identifizieren. Dies wird anhand eines Drei-Wegekatalysators und eines NCA-Partikel gezeigt. N2 - The general topic of this thesis is the development and characterization of the XRM-II nanoCT system, as well as its possibilities for material separation in nano-computed tomographay. The XRM-II nanoCT system is an X-ray microscope integrated into a scanning electron microscope and is based on the principle of geometric magnification. In addition to two-dimensional radiographs, this system is also capable of three-dimensional imaging by using computed tomography. The starting point for the development is the XRM-II system, which is already capable of performing computed tomography in the nanometer range. The acquisition time is between 14 and 21 days, which is the reason why this system is impractical despite its high resolution. By adjusting the aperture settings on the scanning electron microscope, the beam current could be increased by a factor of 40, reducing the acquisition time to 24 hours, while the achievable resolution is still at \(167 \pm 9\) nm. By separating the object and target manipulator, their movement becomes independent and more precisely, resulting in the possibility of resolving even 50 nm sized structures. The characterization is done both for the complete system and separately for the decisive components such as target and detector. Monte Carlo simulations of the focal spot size, which is crucial for the achievable resolution, are performed for the X-ray target and are compared to resolution tests. The spectral resolution of the X-ray detector is checked, which is mainly influenced by the charge sharing effect. The complete system is characterized by the comparison of it to a higher resolving imaging method, the FIB Tomography. The exact same sample, a fragment of a CPU, is analyzed with both imaging methods under the restriction of a similar measurement time (24 h). In the nano-CT the examined volume is 12 times larger than in the FIB tomography, resulting in a lower spatial resolution. Since the spectral resolution of the detector is mainly limited by charge sharing, only materials with a large difference in atomic number can be separated using the detector's energy thresholds. In connection with an appropriate choice of target material, the absorption contrast for light materials such as \(SiO_2\) can be improved. Furthermore, it is possible to identify elements in the computed tomography on the XRM-II nanoCT system using the integrated EDX system. This is demonstrated on a three-way catalytic converter and on a NCA particle. KW - Computertomographie KW - Rasterelektronenmikroskopie KW - Nanometerbereich KW - Röntgendetektor KW - Energieauflösung KW - Elementbestimmung KW - nano-CT KW - Röntgenmikroskopie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319955 ER - TY - THES A1 - Bunzmann, Nikolai Eberhard T1 - Excited State Pathways in 3rd Generation Organic Light-Emitting Diodes T1 - Pfade angeregter Zustände in Organischen Leuchtdioden dritter Generation N2 - This work revealed spin states that are involved in the light generation of organic light-emitting diodes (OLEDs) that are based on thermally activated delayed fluorescence (TADF). First, several donor:acceptor-based TADF systems forming exciplex states were investigated. Afterwards, a TADF emitter that shows intramolecular charge transfer states but also forms exciplex states with a proper donor molecule was studied. The primary experimental technique was electron paramagnetic resonance (EPR), in particular the advanced methods electroluminescence detected magnetic resonance (ELDMR), photoluminescence detected magnetic resonance (PLDMR) and electrically detected magnetic resonance (EDMR). Additional information was gathered from time-resolved and continuous wave photoluminescence measurements. N2 - In dieser Arbeit wurden Spinzustände identifiziert, die an der Lichterzeugung von organischen Leuchtdioden beteiligt sind, welche auf thermisch aktivierter verzögerter Fluoreszenz (engl. TADF) basieren. Zuerst wurden mehrere Donor:Akzeptor basierte TADF Systeme untersucht. Danach wurde ein TADF Emitter studiert, welcher intramolekulare Ladungstransfer Zustände (engl. CT states) zeigt, aber auch Exziplex Zustände mit einem geeigneten Donor Molekül bildet. In erster Linie wurde die experimentelle Methode der Elektronenspinresonanz (ESR) genutzt, insbesondere die erweiterten Techniken Elektrolumineszenz detektierte Magnetresonanz (ELDMR), Photolumineszenz detektierte Magnetresonanz (PLDMR) und elektrisch detektierte Magnetresonanz (EDMR). Zusätzliche Informationen wurden aus zeitaufgelösten und dauerstrich Photolumineszenz Messungen gewonnen. KW - Elektronenspinresonanz KW - Technische Optik KW - Nanometerbereich KW - OLEDs Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220786 ER -