TY - JOUR A1 - Reschke, Moritz A1 - Salvador, Ellaine A1 - Schlegel, Nicolas A1 - Burek, Malgorzata A1 - Karnati, Srikanth A1 - Wunder, Christian A1 - Förster, Carola Y. T1 - Isosteviol sodium (STVNA) reduces pro-inflammatory cytokine IL-6 and GM-CSF in an in vitro murine stroke model of the blood–brain barrier (BBB) JF - Pharmaceutics N2 - Early treatment with glucocorticoids could help reduce both cytotoxic and vasogenic edema, leading to improved clinical outcome after stroke. In our previous study, isosteviol sodium (STVNA) demonstrated neuroprotective effects in an in vitro stroke model, which utilizes oxygen-glucose deprivation (OGD). Herein, we tested the hypothesis that STVNA can activate glucocorticoid receptor (GR) transcriptional activity in brain microvascular endothelial cells (BMECs) as previously published for T cells. STVNA exhibited no effects on transcriptional activation of the glucocorticoid receptor, contrary to previous reports in Jurkat cells. However, similar to dexamethasone, STVNA inhibited inflammatory marker IL-6 as well as granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. Based on these results, STVNA proves to be beneficial as a possible prevention and treatment modality for brain ischemia-reperfusion injury-induced blood–brain barrier (BBB) dysfunction. KW - IL-6 KW - ischemia KW - isosteviol sodium (STVNA) KW - dexamethasone KW - glucocorticoid receptor KW - cerebEND Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286275 SN - 1999-4923 VL - 14 IS - 9 ER - TY - JOUR A1 - Neuhaus, Winfried A1 - Gaiser, Fabian A1 - Mahringer, Anne A1 - Franz, Jonas A1 - Riethmüller, Christoph A1 - Förster, Carola T1 - The pivotal role of astrocytes in an in vitro stroke model of the blood-brain barrier JF - Frontiers in Cellular Neuroscience N2 - Stabilization of the blood-brain barrier during and after stroke can lead to less adverse outcome. For elucidation of underlying mechanisms and development of novel therapeutic strategies validated in vitro disease models of the blood-brain barrier could be very helpful. To mimic in vitro stroke conditions we have established a blood-brain barrier in vitro model based on mouse cell line cerebEND and applied oxygen/glucose deprivation (OGD). The role of astrocytes in this disease model was investigated by using cell line C6. Transwell studies pointed out that addition of astrocytes during OGD increased the barrier damage significantly in comparison to the endothelial monoculture shown by changes of transendothelial electrical resistance as well as fluorescein permeability data. Analysis on mRNA and protein levels by qPCR, western blotting and immunofluorescence microscopy of tight junction molecules claudin-3,-5,-12, occludin and ZO-1 revealed that their regulation and localisation is associated with the functional barrier breakdown. Furthermore, soluble factors of astrocytes, OGD and their combination were able to induce changes of functionality and expression of ABC-transporters Abcb1a (P-gp), Abcg2 (bcrp), and Abcc4 (mrp4). Moreover, the expression of proteases (matrixmetalloproteinases MMP-2, MMP-3, MMP-9, and t-PA) as well as of their endogenous inhibitors (TIMP-1, TIMP-3, PAI-1) was altered by astrocyte factors and OGD which resulted in significant changes of total MMP and t-PA activity. Morphological rearrangements induced by OGD and treatment with astrocyte factors were confirmed at a nanometer scale using atomic force microscopy. In conclusion, astrocytes play a major role in blood-brain barrier breakdown during OGD in vitro. KW - oxygen/glucose deprivation KW - ischemia KW - traumatic brain injury KW - cerebEND KW - C6 KW - stroke KW - in vitro KW - blood-brain barrier Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118297 SN - 1662-5102 VL - 8 ER - TY - THES A1 - Giniunaite, Aiste Marija T1 - Effekte von Tumor Treating Fields (TTFields) auf die Blut-Hirn-Schranke in einem murinen (cerebEND) und humanen (HBMVEC) Zellkulturmodell T1 - Effects of tumour treating fields (TTFields) on the blood-brain barrier in a murine (cerebEND) and human (HBMVEC) cell culture model N2 - TTFields sind eine zugelassene Therapie für die Behandlung von Glioblastom IDH-Wildtyp. Es handelt sich dabei um elektrische Wechselfelder niedriger Intensität und mittlerer Frequenz, die therapeutisch aus zwei Richtungen durch ein tragbares, nicht-invasives Gerät appliziert werden. Sie verhindern die Spindelfaserbildung während der Mitose. Die Wirkung vieler effektiver Chemotherapeutika ist im ZNS durch die Blut-Hirn-Schranke (BHS) eingeschränkt. Die BHS wird nach TTFields Applikation bei 100 kHz in einem murinen cerebEND-Zell-Modell vorübergehend geöffnet. Dieser Effekt wurde in dieser Arbeit zunächst mit Hilfe von Immunfluoreszenzmikroskopie und dann durch einen fraktionierten Western-Blot bestätigt, dass der mutmaßliche Wirkungsmechanismus von TTFields in der Delokalisierung des tight junction Proteins Claudin-5 von der Membran in das Zytoplasma liegt. TEER-Messungen zeigten, dass sich die Integrität der BHS durch 100 kHz TTFields nach 72 h verringerte und 48 h - 72 h nach Ende der Behandlung wieder normalisierte, auch wenn statt eines Behandlungsendes auf 200 kHz TTFields umgeschaltet wurde. Der zweite Teil der Untersuchung bestand darin, ein BHS-Modell aus humanen HBMVEC Zellen zu etablieren, um die Auswirkungen von TTFields im humanen System verifizieren zu können. Zunächst konnten keine Effekte von TTFields unterschiedlicher Frequenz auf eine HBMVEC-Monokultur festgestellt werden. In einer Kokultur mit Perizyten gab es eine erhöhte Expression von Claudin-5, Occludin und PECAM-1. Allerdings zeigten die TEER-Messungen und ein Permeabilitätsassay keine Unterschiede zwischen den Mono- und Kokultur-Modellen der BHS auf. Durch eine transiente Öffnung der BHS könnte eine höhere Dosis von Therapeutika, die normalerweise die BHS nicht überwinden können, im ZNS erreicht werden. Damit könnten TTFields eine innovative Methode zur Behandlung von Hirntumoren und anderen Erkrankungen des ZNS darstellen. Die hier präsentierten Daten geben erste Hinweise in diese Richtung, müssen aber noch optimiert und verifiziert werden. N2 - TTFields are an approved therapy for the treatment of glioblastoma IDH-wildtype. They are low intensity, medium frequency alternating electric fields which are applied therapeutically from two directions by a portable, non-invasive device. TTFields prevent spindle fiber formation during mitosis by aligning the strongly polar tubulin subunits in the electrical fields. The achievement of effective chemotherapy of glioblastoma IDH-wildtype and other central nervous system (CNS) disorders is limited by the blood-brain barrier (BBB). Application of TTFields at 100 kHz at the mouse cell line cerebEND temporarily opens the BBB. This TTFields effect was observed in fluorescence microscopy. Fractionated Western-Blots revealed delocalisation of the TJ-Protein Claudin-5 from the membrane to the cytoplasm due to the application of TTFields. The integrity of the BBB has been shown in TEER measurements to be interrupted by 72 h TTFields application at 100 kHz. This effect was reversible and repeatable. In addition, if TTFields at 200 kHz were applied after BBB-opening at 100 kHz the cells recovered. The second part of this project was to establish a human cell culture BBB model (HBMVEC) to investigate TTFields effects on human cells. There were no effects of TTFields at different frequencies on HBMVEC cells detectable. HBMVEC cells had lower expression of Claudin-5, Occludin and PECAM-1 compared to their co-culture with pericytes. However, TEER measurements and permeability assays revealed no differences between such mono- and co-cultures. By overcoming the BBB a higher dose of the drugs could be achieved in a more controlled manner in the CNS. As a result, TTFields could be an innovative method for the treatment of brain tumours and other diseases of the CNS. The presented experiments provide a first rationale in this direction but require optimisation and verification. KW - Tumortherapiefelder KW - Blut-Hirn-Schranke KW - Glioblastom KW - Zellkultur KW - cerebEND Zellkultur KW - HBMVEC Zellkultur KW - TTFields KW - blood-brain barrier KW - cerebEND KW - HBMVEC KW - Tumor Treating Fields Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-310648 ER -