TY - THES A1 - Schubert, Andreas T1 - Protein kinases as targets for the development of novel drugs against alveolar echinococcosis T1 - Proteinkinasen als Angriffspunkte für die Entwicklung neuer Chemotherapeutika gegen die Alveoläre Echinokokkose N2 - The metacestode larval stage of the fox tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis (AE), one of the most lethal zoonosis of the northern hemisphere. The development of metacestode vesicles by asexual multiplication and the almost unrestricted infiltrative growth within the host organs is ensured from a population of undifferentiated, proliferative cells, so-called germinative cells. AE treatment options include surgery, if possible, as well as Benzimidazole-based chemotherapy (BZ). Given that the cellular targets of BZs, the -tubulins, are highly conserved between cestodes and humans, the chemotherapy is associated with considerable side-effects. Therefore, BZ can only be applied in parasitostatic doses and has to be given lifelong. Furthermore, the current anti-AE chemotherapy is ineffective in eliminating the germinative cell population of the parasite, which leads to remission of parasite growth as soon as therapy is discontinued. This work focuses on protein kinases involved in the proliferation and development of the parasite with the intention of developing novel anti-AE therapies. Polo-like kinases (Plks) are important regulators of the eukaryotic cell cycle and are involved in the regulation and formation of the mitotic spindles during the M-phase of the cell cycle. Plks have already been shown to be associated with deregulated cellular growth in human cancers and have been investigated as novel drug targets in the flatworm parasite Schistosoma mansoni. In the first part of this work, the characterisation of a novel and druggable parasite enzyme, EmPlk1, which is homologous to the polo-like kinase 1 (Plk1) of humans and S. mansoni (SmPlk1), is presented. Through in situ hybridisation, it could be demonstrated that emplk1 is specifically expressed in the Echinococcus germinative cells. Upon heterologous expression in the Xenopus oocyte system, EmPlk1 induced germinal vesicle breakdown, thus indicating that it is an active kinase. Furthermore, BI 2536, a compound originally designed to inhibit the human ortholog of EmPlk1, inhibited the EmPlk1 activity at a concentration of 25 nM. In vitro treatment of parasite vesicles with similar concentrations of BI 2536 led to the elimination of the germinative cells from Echinococcus larvae, thus preventing the growth and further development of the parasite. In in vitro cultivation systems for parasite primary cells, BI 2536 effectively inhibited the formation of new metacestode vesicles from germinative cells. Thus, BI 2536 has profound anti-parasitic activities in vitro at concentrations well within the range of plasma levels measured after the administration of safe dosages to patients (50 nM after 24 h). This implies that EmPlk1 is a promising new drug target for the development of novel anti-AE drugs that would specifically affect the parasite’s stem cell population, namely the only parasite cells capable of proliferation. In addition to the chemotherapeutic aspects of this work, the inhibitor BI 2536 could be further used to study the function of stem cells in this model organism, utilising a method of injection of parasite stem cells into metacestode vesicles, for instance, as has been developed in this work. In the second part of this work, a novel receptor tyrosine kinase, the Venus flytrap kinase receptor (EmVKR) of E. multilocularis has been characterised. Members of this class of single-pass transmembrane receptors have recently been discovered in the related trematode S. mansoni and are associated with the growth and differentiation of sporocyst germinal cells and ovocytes. The ortholog receptor in EmVKR is characterised by an unusual domain composition of an extracellular Venus flytrap module (VFT), which shows significant similarity to GABA receptors, such as the GABAB receptor (γ-amino butyric acid type B) and is linked through a single transmembrane domain to an intracellular tyrosine kinase domain with similarities to the kinase domains of human insulin receptors. Based upon the size (5112bp) of emvkr and nucleotide sequence specificities, efforts have been made to isolate the gene from cell culture samples to study the ligand for the activation of this receptor type in Xenopus oocytes. To date, this type of receptor has only been described in invertebrates, thus making it an attractive target for drug screening. In a first trial, the ATP competitive inhibitor AG 1024 was tested in our in vitro cell culture. In conclusion, the EmVKR represents a novel receptor tyrosine kinase in E. multilocularis. Further efforts have to be made to identify the activating ligand of the receptor and its cellular function, which might strengthen the case for EmVKR as a potential drug target. The successful depletion of stem cells in the metacestode vesicle by the Plk1 inhibitor BI 2536 gives rise to optimising the chemical component for EmPlk1 as a new potential drug target. Furthermore, this inhibitor opens a new cell culture technique with high potential to study the cellular behaviour and influencing factors of stem cells in vitro. N2 - Das Verbreitungsgebiet des kleinen Fuchsbandwurms erstreckt sich über die nördliche Hemisphäre und eine Infektion des Menschen verursacht eine meist tödliche verlaufende Parasitose, die alveolaren Echinococcose (AE). Durch infiltratives und asexuelles Wachstum des Larvenstadiums der AE im betroffenen Wirtsorgan kommt es zu einer tödlich verlaufenden Krankheit. Das Wachstum der Metacestoden wird dabei durch undifferenzierte proliferierende Stammzellen, den sog. „germinativen Zellen“ des Fuchsbandwurmes verursacht. Die derzeitigen Behandlungsmöglichkeiten von AE sehen neben einem chirurgischen Eingriff, der in den meisten Fällen nicht möglich ist, nur eine Chemotherapie mit Benzimidazolen (BZ) vor. Die Chemotherapie mit BZ richtet sich dabei gegen die β-Tubuline des Parasiten und ist überwiegend mit einer lebenslangen Behandlung verbunden. Obwohl sich die Behandlungsmöglichkeiten und die Prognose für Patienten seit der Verwendung von Benzimidazolen bedeutsam verbessert haben, kommt es dennoch zu starken Nebenwirkungen und die angewendete Chemotherapie wirkt nur parasitostatisch. Der Grund dafür liegt an der hohen Homologie zwischen den β-Tubulinen des Parasiten und des Menschen, welche die Zielproteine von Benzimidazolen sind. Um die Nebenwirkungen für den Patienten gering zu halten, werden die Benzimidazole nur in Konzentrationen verabreicht, die parasitostatisch wirken, was zu keiner Abtötung des Parasitengewebes führt. Darüber hinaus sind die gegenwärtigen AE-Medikamente nicht wirksam gegen die germinativen Zellen des Parasiten, was zu einem Wiederauftreten des Wachstums von Parasitengewebe führt, sobald die Chemotherapie unterbrochen wird. Die hier vorliegende Arbeit konzentriert sich auf die Entwicklung eines neuen chemotherapeutischen Ansatzes gegen AE und befasst sich mit Proteinkinasen, die einen wesentlichen Einfluss auf die Proliferation und die Differenzierung von Zellen des Parasiten haben. Proteinkinasen, die in direkten Zusammenhang mit den Zellzyklus stehen, sind beispielsweise die Polo-like kinasen (Plk), welche die Bildung von mitotischen Spindelfasern während der M-Phase regulieren. Wie bereits in vorhergehenden Studien gezeigt werden konnte, sind Plks auch an der Entstehung von Krebs beteiligt und daher interessante Ansatzpunkte für die Entwicklung von neuen Chemotherapeutika. Darüber hinaus zeigte sich auch, dass Sie zur Chemotherapie von parasitären Krankheiten Verwendung finden könnten, wie zur Behandlung von Schistosomiasis, welche durch Schistosoma mansoni ausgelöst wird. Der erste Teil dieser Arbeit befasst sich mit der Charakterisierung der Polo-like kinase 1 (Plk1) aus E. multilocularis, die Homologien zur humanen Plk1 und der aus S. mansoni (SmPlk1) aufweist und daher als Ansatzpunkt für eine neuartige chemotherapeutische Behandlung von AE angesehen werden kann. Es konnte gezeigt werden, dass EmPlk1 in germinativen Zellen (Stammzellen) des Parasiten stark exprimiert wird und das es möglich ist, dieses orthologe Protein mit nanomolekularer Konzentration (25 nM) des Plk1 Inhibitors BI 2536 in seiner zellulären Funktion zu hemmen. Darüber hinaus führt die Behandlung in vitro zu einem Verlust von Stammzellen im Larvenstadium von E. multilocularis, was zu einer drastischen Verminderung des Wachstums und der Entwicklung des Parasiten führt. Des Weiteren konnte sehr deutlich gezeigt werden, dass bei Verwendung des Inhibitors BI 2536 in Zellkultursystemen mit „Primärzellen“ (80% Stammzellen) des Parasiten diese nicht mit mehr in der Lage sind in Metacestoden zu regenerieren. Dabei ist entscheidend, dass die verwendeten Konzentrationen des Inhibitors BI 2536 innerhalb der gemessenen Plasmakonzentrationen von Krebspatienten liegen (50 nM nach 48 Stunden). Die Inhibierung der Plk1 wird daher als vielversprechender neuer Ansatzpunkt einer Chemotherapie zur Behandlung der AE angesehen. Die Inhibierung der EmPlk1 hat einen wesentlichen Einfluss auf die Differenzierung von Stammzellen des Parasiten, wodurch das Wachstum und die weitere Entwicklung des Parasiten gehemmt werden. Des Weiteren kann neben der chemotherapeutischen Behandlung der Inhibitor BI2536 auch für das weitere Studium von Stammzellen und deren zelluläre Funktion in E. multilocularis genutzt werden. Dafür wurden erste in vitro Experimente mittels Injektion in stammzellfreie Metacestoden Vesikel durchgeführt. Der zweite Teil dieser Arbeit befasst sich mit einem neuen Transmembranrezeptor in E. multilocularis, der hier als Venus-Fliegenfallen-Rezeptor charakterisiert wird. Dieser Rezeptortyp wurde erst kürzlich in S. mansoni beschrieben und steht im Zusammenhang mit der Entwicklung und dem Wachstum von Keimzellen des Parasiten. Der Rezeptor weist eine ungewöhnliche Zusammensetzung aus einer extrazellulären Venusfliegenfallendomäne (VFT) mit starker Ähnlichkeit zu GABA Rezeptoren auf (γ-amino-Buttersäure Typ B) und ist über eine einzelne Transmembrandomäne mit einer intrazellulären Tyrosinkinasedomäne verbunden, die eine hohe Homologie zu humanen Insulinrezeptoren zeigt. Der lange Genabschnitt (5112bp) von emvkr mit sequenzspezifischen Eigenschaften war schwierig zu klonieren, um eine anschließende Expression in Xenopus Oozyten durchzuführen. Bisher wurde dieser Rezeptor nur in Invertebraten beschrieben und stellt somit einen interessanten Ansatzpunkt für die Entwicklung von neuen Chemotherapeutika dar. In einem ersten Versuch wurde die Wirkung des ATP-Kompetitive Inhibitors AG 1024 in unserer in vitro Zellkultur untersucht. Zusammenfassend wurde die Relevanz von EmVKR als neuartiger Tyrosinkinaserezeptor in E. multilocularis verdeutlicht. In anschließenden Studien sollte die Aktivierung durch Ligandenbindung an den Rezeptor, sowie seine weitere zelluläre Funktion untersucht werden. Diese Erkenntnisse könnten dann eine entscheidende Rolle für die Entwicklung von neuen Medikamenten mit EmVKR spielen. Des Weiteren wurde die erfolgreiche Entfernung von Stammzellen aus Metacestoden Vesikel mit dem Plk1 Inhibitor BI 2536 gezeigt. Dies bietet nun die Option diesen Inhibitor auf das Wirkstoffziel EmPlk1 weiter zu optimieren. Darüber hinaus hat die Verwendung dieses Inhibitors den entscheidenden Zugang für eine neue Zellkulturtechnik ermöglicht, die das Studieren von Stammzellen und deren Einflussfaktoren in vitro bietet. KW - Chemotherapie KW - Echinococcus KW - Fuchsbandwurm KW - Stammzelle KW - Polo-like kinase 1 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113694 ER - TY - THES A1 - Obier, Nadine T1 - Defining the end of pluripotency in mouse embryonic stem cells T1 - Studien zum Ende der Pluripotenz in emrbyonalen Stammzellen der Maus N2 - Stammzellen mit ihrer besonderen Fähigkeit sich selbst zu erneuern und zu differenzieren stellen einen faszinierenden Zelltyp für Grundlagenforschung und angewandte Wissenschaften dar. Pluripotente embryonale Stammzellen (ES Zellen), die aus Zellen der inneren Zellmasse von Präimplantationsembryonen etabliert werden, können ekto-, meso- und endodermale Zelltypen sowie Keimzellen hervorbringen. Im Gegensatz dazu sind multipotente adulte Stammzellen in ihrem Entwicklungspotential eingeschränkt, sie differenzieren sich zu allen Zelltypen ihres Gewebes. Zum Beispiel hämatopoetische Stammzellen (HSZs), die sich in Blut-bildenden Geweben wie dem Knochenmark befinden, vermögen sich in alle Blutzellen zu differenzieren. Während der Differenzierung von Stammzellen ändert sich nicht deren Genom, sondern ihre epigenetische Regulation. Durch epigenetische Mechanismen werden Zelltypen mit verschiedensten Phänotypen und Funktionen generiert. Für Stammzelltherapien ist ein tieferes Verständnis des Zusammenhangs von Epigenom und zellulärer Funktion wichtig. Im Rahmen dieser Dissertation war es mein Ziel, differenzierende Stammzellkulturen auf ihre Genexpression, ihre Chromatinregulation und ihr Differenzierungspotiential hin zu analysieren. Um Histonmodifikationen, die einen möglichen Mechanismus epigenetischer Regulation darstellen, global untersuchen zu können, sind zunächst, durchusszytometrische Protokolle etabliert worden, die die Analyse einzelner Zellen ermöglichen sollten. Mit dieser Methode konnten reduzierte Levels von Histonazetylierung in differenzierten ES Zellen gezeigt werden. Im Gegensatz dazu beobachtete ich vergleichbare Levels von Histonazetylierung in unreifen und reifen Knochenmarkzellen. Zusätzlich untersuchte ich die Wirkung des Histondeazetylase-Inhibitors (HDI) Trichostatin A (TSA) auf Knochenmarkzellkulturen, in denen auch HSZs enhalten sind. Nach Behandlung mit TSA erhöhte sich der Anteil von Zellen mit in vitro und in vivo hämatopoetischer Aktivität, während vor allem differenzierte Zellen in Apoptose gingen. Außerdem wurde der Verlust der Pluripotenz in differenzierenden ES Zellkulturen untersucht. Marker-basierte Analysen und funktionelle Tests wurden mit ES Zellen durchgeführt, die kurzfristig in vitro differenziert wurden. Es stellte sich heraus, dass nach funktionellen Gesichtspunkten die Pluripotenz bereits nach 2 Tagen Differenzierung deutlich reduziert war, beurteilt anhand der Fähigkeit Kolonien zu bilden, embryoide Körperchen (EK) zu formieren und zu kontrahierenden Herzmuskelzelltypen zu differenzieren. Im Gegensatz dazu verringerte sich die Expression von Pluripotenzmarkern erst zu späteren Zeitpunkten. Ich habe weiterhin beobachten können, dass die Wahl des Differenzierungssystems (Aggregations-EK, klonale EKs oder als adhärente Einzelzellschicht) einen Einfluss auf den Fortschritt und die Homogenität der Differenzierung hatte. Um das Ende der Pluripotenz genauer zu untersuchen, wurden differenzierte ES Zellen zurück in ES Zellkulturbedingungen gebracht. Die Ergebnisse deuten an, dass 3 Tage differenzierte ES Zellen einen Punkt überschritten haben, an dem eine Rückkehr zur Pluripotenz allein durch Kulturbedingungen noch möglich ist. Durch die Behandlung mit HDIs starben selektiv differenzierte ES Zellen. Des Weiteren war es Ziel dieser Arbeit, den Einuss von EED - einer essentiellen Untereinheit des Histon-methylierenden Polycomb repressive complex 2 (PRC2) - auf das Chromatin und die Funktion von ES Zellen hin zu analysieren. ES Zellen ohne EED wiesen neben dem bereits bekannten Verlust der Trimethylierung von Histon 3 an Lysin 27 (H3K27me3), global reduzierte H3K9me3 Levels sowie erhöhte Histonazetylierung auf. Trotz typischer ES Zell-Morphologie und normaler Expression von Pluripotenzgenen, besaßen EED knockout (KO)ES Zellen eine veränderte Organisation der Heterochromatinstruktur im Zellkern, eine verlangsamte Chromatinmobilität und Probleme bei der Differenzierung. Zusammenfassend gewähren meine Daten Einblick in die epigenetische Regulation von Stammzellen. Im Besonderen konnte ich zeigen, dass die Behandlung mit HDIs für differenzierende Knochenmarkzellen und differenzierende ES Zellen nachteilig war und zu deren selektivem Zelltod führte. Die hier durchgeführten Analysen ergaben, dass ES Zellen nach 3 Tagen Differenzierung das Ende der Pluripotenz erreicht hatten. Schließlich zeigten die Versuche mit EED KO ES Zellen, dass sie sich zwar selbst erneuerten und morphologisch identisch mit wildtypischen ES Zellen waren, jedoch Defekte bei der Differenzierung besaßen. Dies deutet darauf hin, dass EED nicht nur für undifferenzierte ES Zellen wichtig ist, sondern auch während der Differenzierung von Bedeutung ist. N2 - Stem cells with the particular potential to self renew and to differentiate into multiple cell lineages are fascinating cell types for basic and applied research. Pluripotent embryonic stem (ES) cells are derived from the inner cell mass (ICM) of preimplantation embryos. Upon differentiation ES cells can give rise to cells of ecto-, meso- and endoderm including germ cells. In contrast, multipotent adult stem cells are more restricted in their differentiation outcomes,they differentiate into cells of their tissue of origin. For example, hematopoietic stem cells (HSCs) that reside in hemogenic tissues such as the bone marrow (BM) differentiate into hemato-/lymphoid cell lineages. Upon differentiation of stem cells not the genome, but the epigenetic regulation changes. Differentiation-associated epigenetic changes generate cell types with distinct phenotypes and functions. For stem cell-based therapies it is important to deeper understand the relation between epigenome and cellular function. In the scope of this thesis I aimed to analyze cultures of differentiating stem cells with respect to gene expression, chromatin regulation and differentiation potential. For the analysis of global histone modification levels, which represent one mechanism for epigenetic regulation, fow cytometric protocols were established that allow single cell measurements. By applying this methodology decreased histone acetylation levels were shown in differentiated ES cell populations. In contrast, comparable histone acetylation levels were observed in differentiated and undifferentiated BM cells. In addition, I investigated effects of the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) on murine BM cells, comprising also HSCs. Upon TSA treatment the frequency of cells with in vitro and in vivo hematopoietic activity was increased, while lineage committed cells underwent apoptosis. Next, the loss of pluripotency was assessed in differentiating ES cell cultures. Using short-term in vitro differentiation protocols marker-based analyses and functional assays were performed.Functionally pluripotency was diminished after 2 days of differentiation as assessed by colony formation, embryoid body (EB) formation and cardiomyogenic differentiation approaches. In contrast, pluripotency marker expression was reduced at later time points. Further, the application of distinct differentiation systems (aggregation EB, clonal EB or monolayer (ML) culture) had an impact on the progression and homogeneity of differentiation cultures. To further study the end of pluripotency, differentiated ES cells were placed under ES cell culture conditions. The data suggest that 3 days differentiated ES cells had passed a point of no return and failed to regain Oct4-eGFP expression and that HDAC inhibitor treatment selectively killed differentiated ES cells. Finally, I aimed to study the effect of EED - a core subunit of the histone methylating Polycomb repressive complex 2 (PRC2) - on ES cell chromatin and function. ES cells lacking EED showed loss of histone H3 lysine 27 trimethylation (H3K27me3) accompanied by increased histone acetylation and reduced H3K9me3 levels. Despite typical ES cell morphology and pluripotency marker expression, EED knockout (KO) ES cells exhibited altered nuclear heterochromatin organization, delayed chromatin mobility and a failure in proper differentiation. Conclusively, my data provide insights into the epigenetic regulation of stem cells. Particularly, the results suggest that HDAC inhibitor treatment was detrimental for differentiated BM as well as for differentiated ES cells and that ES cells after 3 days of differentiation had lost pluripotency. Further, the data demonstrate that EED KO ES cells self renewed, exhibited morphology and pluripotency marker expression similar to wild type ES cells, but failed to differentiate. This indicates an important role of EED not only for undifferentiated but also for differentiating ES cells. KW - Stammzelle KW - Epigenetik KW - Pluripotenz KW - stem KW - epigenetic KW - pluripotency Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53722 ER - TY - THES A1 - Mühlemann, Markus T1 - Intestinal stem cells and the Na\(^+\)-D-Glucose Transporter SGLT1: potential targets regarding future therapeutic strategies for diabetes T1 - Intestinale Stammzellen und der Na\(^+\)-D-Glukose Transporter SGLT1: potentielle Ansatzpunkte neuartiger Therapien für Diabetes Patienten N2 - The pancreas and the small intestine are pivotal organs acting in close synergism to regulate glucose metabolism. After absorption and processing of dietary glucose within the small intestine, insulin and glucagon are released from pancreatic islet cells to maintain blood glucose homeostasis. Malfunctions affecting either individual, organ-specific functions or the sophisticated interplay of both organs can result in massive complications and pathologic conditions. One of the most serious metabolic diseases of our society is diabetes mellitus (DM) that is hallmarked by a disturbance of blood glucose homeostasis. Type 1 (T1DM) and type 2 (T2DM) are the main forms of the disease and both are characterized by chronic hyperglycemia, a condition that evokes severe comorbidities in the long-term. In the past, several standard treatment options allowed a more or less adequate therapy for diabetic patients. Albeit there is much effort to develop new therapeutic interventions to treat diabetic patients in a more efficient way, no cure is available so far. In view of the urgent need for alternative treatment options, a more systemic look on whole organ systems, their biological relation and complex interplay is needed when developing new therapeutic strategies for DM. T1DM is hallmarked by an autoimmune-mediated destruction of the pancreatic β-cell mass resulting in a complete lack of insulin that is in most patients restored by applying a life-long recombinant insulin therapy. Therefore, novel regenerative medicine-based concepts focus on the derivation of bioartificial β-like cells from diverse stem cell sources in vitro that survive and sustain to secrete insulin after implantation in vivo. In this context, the first part of this thesis analyzed multipotent intestinal stem cells (ISCs) as alternative cell source to derive bioartificial, pancreatic β-like cells in vitro. From a translational perspective, intestinal stem cells pose a particularly attractive cell source since intestinal donor tissues could be obtained via minimal invasive endoscopy in an autologous way. Furthermore, intestinal and pancreatic cells both derive from the same developmental origin, the endodermal gut tube, favoring the differentiation process towards functional β-like cells. In this study, pancreas-specific differentiation of ISCs was induced by the ectopic expression of the pancreatic transcription factor 1 alpha (Ptf1a), a pioneer transcriptional regulator of pancreatic fate. Furthermore, pancreatic lineage-specific culture media were applied to support the differentiation process. In general, ISCs grow in vitro in a 3D Matrigel®-based environment. Therefore, a 2D culture platform for ISCs was established to allow delivery and ectopic expression of Ptf1a with high efficiency. Next, several molecular tools were applied and compared with each other to identify the most suitable technology for Ptf1a delivery and expression within ISCs as well as their survival under the new established 2D conditions. Success of differentiation was investigated by monitoring changes in cellular morphology and induction of pancreatic differentiation-specific gene expression profiles. In summary, the data of this project part suggest that Ptf1a harbors the potential to induce pancreatic differentiation of ISCs when applying an adequate differentiation media. However, gene expression analysis indicated rather an acinar lineage-determination than a pancreatic β-cell-like specification. Nevertheless, this study proved ISCs not only as interesting stem cell source for the generation of pancreatic cell types with a potential use in the treatment of T1DM but alsoPtf1a as pioneer factor for pancreatic differentiation of ISCs in general. Compared to T1DM, T2DM patients suffer from hyperglycemia due to insulin resistance. In T2DM management, the maintenance of blood glucose homeostasis has highest priority and can be achieved by drugs affecting the stabilization of blood glucose levels. Recent therapeutic concepts are aiming at the inhibition of the intestinal glucose transporter Na+-D-Glucose cotransporter 1 (SGLT1). Pharmacological inhibition of SGLT1 results in reduced postprandial blood glucose levels combined with a sustained and increased Glucagon-like peptide 1 (GLP-1) secretion. So far, systemic side effects of this medication have not been addressed in detail. Of note, besides intestinal localization, SGLT1 is also expressed in various other tissues including the pancreas. In context of having a closer look also on the interplay of organs when developing new therapeutic approaches for DM, the second part of this thesis addressed the effects on pancreatic islet integrity after loss of SGLT1. The analyses comprised the investigation of pancreatic islet size, cytomorphology and function by the use of a global SGLT1 knockout (SGLT1-/-) mouse model. As SGLT1-/- mice develop the glucose-galactose malabsorption syndrome when fed a standard laboratory chow, these animals derived a glucose-deficient, fat-enriched (GDFE) diet. Wildtype mice on either standard chow (WTSC) or GDFE (WTDC) allowed the discrimination between diet- and knockout-dependent effects. Notably, GDFE fed mice showed decreased expression and function of intestinal SGLT1, while pancreatic SGLT1 mRNA levels were unaffected. Further, the findings revealed increased isled sizes, reduced proliferation- and apoptosis rates as well as an increased α-cell and reduced β-cell proportion accompanied by a disturbed cytomorphology in islets when SGLT1 function is lost or impaired. In addition, pancreatic islets were dysfunctional in terms of insulin- and glucagon-secretion. Moreover, the release of intestinal GLP-1, an incretin hormone that stimulates insulin-secretion in the islet, was abnormal after glucose stimulatory conditions. In summary, these data show that intestinal SGLT1 expression and function is nutrient dependent. The data obtained from the islet studies revealed an additional and new role of SGLT1 for maintaining pancreatic islet integrity in the context of structural, cytomorphological and functional aspects. With special emphasis on SGLT1 inhibition in diabetic patients, the data of this project indicate an urgent need for analyzing systemic side effects in other relevant organs to prove pharmacological SGLT1 inhibition as beneficial and safe. Altogether, the findings of both project parts of this thesis demonstrate that focusing on the molecular and cellular relationship and interplay of the small intestine and the pancreas could be of high importance in context of developing new therapeutic strategies for future applications in DM patients. N2 - Das komplexe Zusammenspiel zwischen Pankreas und Dünndarm ist von großer Bedeutung für den Zucker Stoffwechsel. Während der Dünndarm Glukose aus der Nahrung absorbiert, sezerniert der Pankreas Insulin und Glukagon für die Regulation des Blutzuckerspiegels. Bereits kleinste Fehlfunktionen in einem der beiden Organe können das fein abgestimmte Zusammenspiel aus der Balance bringen und zu schwerwiegenden Begleiterscheinungen führen. Die bekannteste Krankheit bezüglich eines gestörten Blutzuckerhaushaltes ist Diabetes mellitus (DM). Die wichtigsten Formen sind Typ1 und Typ 2 Diabetes, welche beide durch chronische Hyperglykämie gekennzeichnet sind, einem Zustand der langfristig zu schweren Komplikationen führt. Derzeit ist keine Heilung möglich, jedoch vermindert eine Vielzahl von Medikamenten und Therapien die auftretenden Symptome, was die Lebensqualität der Patienten erheblich verbessert. Für die Entwicklung von neuen Medikamenten und Therapien für DM Patienten, muss der Fokus vermehrt auf die Gesamtheit der Organ-Organ Interaktionen, sowie den entwicklungsbiologischen Ursprung der einzelnen Organe gerichtet werden. Bei Typ 1 Diabetes werden die insulinsekretierende β-Zellen vom Immunsystem zerstört, was zu einem Mangel an Insulin führt. Deshalb ist eine regelmäßige Insulingabe unabdingbar, um eine Hyperglykämie vorzubeugen. Ein vielversprechender Ansatz um fehlendes Insulin zu kompensieren besteht darin aus Stammzellen bioartifizielle, insulinsekretierende Zellen zu generieren. In diesem Zusammenhang ist der biologische Ursprung der zu differenzierenden Zellen von großer Bedeutung. In dieser Arbeit werden daher intestinale Stammzellen (ISZ) als mögliche alternative Zellquelle beschrieben, um insulinsekretierende Zellen zu generieren. Aus medizinischer Sicht eigenen sich ISZ besonders gut für regenerative Therapien, da sie patientenspezifisch durch eine minimal-invasive Endoskopie entnommen werden können. Des Weiteren haben die beiden Organe einen gemeinsamen embryologischen Ursprung, die endodermalen Darmröhre, was die pankreatische Differenzierung begünstigen könnte. Mithilfe der ektopischen Expression des pankreatischen Masterregulators pankreatischer Transkriptionsfaktors 1 alpha (Ptf1a), sollen ISZ in insulinsekretierende β-Zell-ähnliche Zelltypen differenziert werden. Zudem soll ein pankreas-spezifisches Differenzierungsmedium die Effizienz der Differenzierung erhöhen. Da ISZ normalerweise in einer 3D Umgebung kultiviert werden, wurde für diese Arbeit eine 2D Zellkultur etabliert, um eine hocheffiziente genetische Manipulation zur ektopischen Expression von Ptf1a zu garantieren. Im nächsten Schritt wurde die bestmögliche Methode evaluiert um Ptf1a in ISZ zu integrieren, welche gleichzeitig aber das Wachstum und Überleben der Zellen nicht beeinträchtigt. Der Erfolg der angewandten Methode wurde basierend auf der Zellmorphologie, sowie der Transkription von pankreasspezifischen Genen überprüft. Die Ergebnisse dieser Studie haben gezeigt, dass die Ptf1a-induzierte Differenzierung in Verbindung mit der Applikation eines spezifischen Differenzierungsmediums das Genexpressionsprofil von Azinär Zellen induziert und nicht wie erwartet, das von endokrinen β-Zellen. Dies bedeutet, dass Ptf1a die Kapazität aufweist, ISZ in pankreatische Zellen zu konvertieren, jedoch bei der Entwicklung in Richtung insulinsekretierende β-Zellen keine Rolle spielt. Letztendlich zeigen die Ergebnisse dieser Arbeit, dass ISZ eine interessante Alternative zu pluripotenten Stammzellen darstellen. Im Gegensatz zu Typ 1 leiden Typ 2 Diabetes Patienten an Hyperglykämie infolge von Insulinresistenz, welche oft mit blutzuckerregulierenden Medikamenten behandelt werden können. Eine gute Therapiemöglichkeit ist die Inhibition des intestinalen Glukosetransporters SGLT1, was zu einer drastisch reduzierten postprandialen Glukoseaufnahme führt und gleichzeitig die intestinale Sekretion des Inkretins Glukose-like Peptide 1 (GLP-1) erhöht. Beides wirkt sich positiv auf die Blutzuckerregulation unter diabetischen Verhältnissen aus. Obwohl SGLT1 primär im Dünndarm exprimiert ist, wurde dessen Expression auch in anderen Organen, wie dem Gehirn, dem Herz, der Lunge und in pankreatischen α-Zellen nachgewiesen. Im zweiten Teil dieser Arbeit wurde daher der Einfluss des Funktionsverlustes von SGLT1 auf die Integrität pankreatischer Inselzellcluster analysiert. Im diesem Rahmen wurde die Morphologie der pankreatischen Inseln, deren Architektur und Funktion mithilfe eines etablierten murinen SGLT1 Knockout (SGLT1-/-) Modelles untersucht. Da SGLT1-/- Mäuse unter einer Standard Labordiät (SD) ein schweres Glukose-Galaktose Malabsorptions Syndrom entwickeln, erhalten die Tiere eine glukose-freie, fett-angereicherte Diät (GDFE). Um diät- und knockoutspezifische Effekte unterscheiden zu können, wurden als Kontrollen SD- und GDFE-gefütterte Wildtyp Tiere mit den SGLT1-/- Mäusen verglichen. Wildtyptiere unter GDFE Diät zeigten eine verminderte Expression und Funktionalität des intestinalen SGLT1 Transporters, während im Pankreas die SGLT1 mRNA Expression nicht von der Diät beeinflusst wurde. Die Ergebnisse dieser Arbeit haben gezeigt, dass in SGLT1-/- Pankreata, die Inseln größer sind, aber auch die Proliferations- und Apoptoserate in den Inselzellen reduziert ist. Zudem befinden sich in SGLT1-/- Inseln mehr α-Zellen und weniger β-Zellen. Des Weiteren ist die typische Anordnung der endokrinen Zellen gestört. Diese Beobachtungen deuten darauf hin, dass SGLT1 in pankreatischen Inseln eine wichtige Rolle für die strukturelle Organisation der verschiedenen Zelltypen innerhalb der Inseln spielt. Ergänzend wurde gezeigt, dass isolierte SGLT1-/- Inseln in der Gegenwart von Glukose unfähig sind Insulin oder Glukagon zu sezernieren. Weitere Untersuchungen im Tier haben ergeben, dass auch das insulinsekretionsfördernde Hormon GLP-1 in atypischer Art und Weise sekretiert wird. In dieser Arbeit wurde gezeigt, dass die intestinale SGLT1 Expression und Funktion durch Nährstoffe beeinflusst werden kann. Des Weiteren wurde erstmals eine neue Funktion für SGLT1 bezüglich der strukturellen und zellulären Organisation pankreatischer Inselzellcluster beschrieben. Daten zu neuen klinischen SGLT1 Inhibitoren beschreiben lediglich eine intestinale SGLT1 Blockierung, während die Wirkung in weitern Organen nicht berücksichtigt wurde. Die Daten dieser Arbeit liefern klare Indizien dafür, dass starke Nebenwirkungen und Effekte auch in anderen SGLT1-exprimierenden Geweben und Organen auftreten könnten, wenn die SGLT1 Funktion verloren geht. Zusammenfassend konnte in dieser Arbeit gezeigt werden, dass die Regulation des Blutzuckerspiegels auf einem komplexen Zusammenspiel zwischen Dünndarm und Pankreas basiert. Daher sollten bei zukünftigen SGLT1 Inhibitions-Studien im Menschen die Interaktionen zwischen den beiden Organen unbedingt berücksichtigt werden, um die Wirksamkeit und die Sicherheit solcher Medikamente für Diabetes Patienten besser darzulegen. KW - Stammzelle KW - Diabetes mellitus KW - Sglt1 KW - GLP-1 KW - blood glucose regulation KW - Intestinal stem cell KW - Lgr5 KW - islets of Langerhans KW - pancreas KW - glucose KW - insulin Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169266 ER - TY - THES A1 - Koziol, Uriel T1 - Molecular and developmental characterization of the Echinococcus multilocularis stem cell system T1 - Molekulare und entwicklungsbiologische Charakterisierung des Echinococcus multilocularis Stammzellsystems N2 - The metacestode larva of Echinococcus multilocularis is the causative agent of alveolar echinococcosis (AE), one of the most dangerous zoonotic diseases in the Northern Hemisphere. Unlike “typical” metacestode larvae from other tapeworms, it grows as a mass of interconnected vesicles which infiltrates the liver of the intermediate host, continuously forming new vesicles in the periphery. From these vesicles, protoscoleces (the infective form for the definitive host) are generated by asexual budding. It is thought that in E. multilocularis, as in other flatworms, undifferentiated stem cells (so-called germinative cells in cestodes and neoblasts in free-living flatworms) are the sole source of new cells for growth and development. Therefore, this cell population should be of central importance for the progression of AE. In this work, I characterized the germinative cells of E. multilocularis, and demonstrate that they are indeed the only proliferating cells in metacestode vesicles. The germinative cells are a population of undifferentiated cells with similar morphology, and express high levels of transcripts of a novel non-autonomous retrotransposon family (ta-TRIMs). Experiments of recovery after hydroxyurea treatment suggest that individual germinative cells have extensive self-renewal capabilities. However, germinative cells also display heterogeneity at the molecular level, since only some of them express conserved homologs of fgfr, nanos and argonaute genes, suggesting the existence of several distinct sub-populations. Unlike free-living flatworms, cestode germinative cells lack chromatoid bodies. Furthermore, piwi and vasa orthologs are absent from the genomes of cestodes, and there is widespread expression of some conserved neoblast markers in E. multilocularis metacestode vesicles. All of these results suggest important differences between the stem cell systems of free-living flatworms and cestodes. Furthermore, I describe molecular markers for differentiated cell types, including the nervous system, which allow for the tracing of germinative cell differentiation. Using these molecular markers, a previously undescribed nerve net was discovered in metacestode vesicles. Because the metacestode vesicles are non-motile, and the nerve net of the vesicle is independent of the nervous system of the protoscolex, we propose that it could serve as a neuroendocrine system. By means of bioinformatic analyses, 22 neuropeptide genes were discovered in the E. multilocularis genome. Many of these genes are expressed in metacestode vesicles, as well as in primary cell preparations undergoing complete metacestode regeneration. This suggests a possible role for these genes in metacestode development. In line with this hypothesis, one putative neuropeptide (RGFI-amide) was able to stimulate the proliferation of primary cells at a concentration of 10-7 M, and the corresponding gene was upregulated during metacestode regeneration. N2 - Das Metazestoden Larvenstadium von Echinococcus multilocularis ist die Ursache für die alveoläre Echinokokkose (AE), eine der gefährlichsten Zoonosen in der nördlichen Hemisphäre. Im Gegensatz zu Metazestoden anderer Bandwürmer wächst es zu einem Labyrinth verknüpfter Vesikel, die in der Peripherie permanent neu gebildet werden und dabei die Leber des Wirts infilitrieren. In diesen Vesikeln werden die Protoskolizes (das infizierende Stadium für den Endwirt) durch asexuelle Knospung aus der Vesikelwand heraus gebildet. Man geht davon aus dass in E. multilocularis, wie in anderen Plattwürmen, undifferenzierte Stammzellen (so gennante „Germinative cells” in Bandwürmern und Neoblasten in Turbellarien) der einzige Ursprung neuer Zellen für Wachstum und Entwicklung sind. Deshalb sollte diese Zellpopulation eine zentrale Rolle im Fortschritt der AE spielen. In dieser Arbeit habe ich die Germinative cells von E. multilocularis charakterisiert und zeige, dass sie tatsächlich die einzigen sich vermehrenden Zellen in Metazestodenvesikeln sind. Die Germinative cells sind eine Population von undifferenzierten Zellen mit ähnlicher Morphologie, die eine hohe Zahl an Transkripten einer neuen Retrotransposonfamilie (ta-TRIMs) exprimieren. Experimente nach Behandlung mit Hydroxyurea deuten darauf hin, dass einzelne Germinative cells die Fähigkeit haben sich selbst zu erneuern. Allerdings, zeigen die Germinative cells auch Heterogenität auf molekurarer Ebene, da nur manche von Ihnen konservierte Homologe von fgfr, nanos und argonaute Genen exprimieren, was auf die Existenz eindeutiger Subpopulationen hinweist. Im Gegensatz zu Turbellarien fehlen den Germinative cells von Zestoden “Chromatoid bodies”, weiterhin fehlen dem Genom der Zestoden Orthologe von piwi und vasa und es werden einige Neoblastenmarker in den Metazestodenvesikeln von E. multilocularis umfassend exprimiert. All diese Ergebnisse zeigen deutliche Unterschiede zwischen den Stammzellsystemen von Turbellarien und Zestoden auf. Ich beschreibe ausserdem molekulare Marker für differenzierte Zelltypen, inklusive solche des Nervensystems. Mit diesen Markern wurde ein Nervennetz in Metazestodenvesikeln endeckt, das bis dato unbeschrieben war. Da die Vesikel unbeweglich sind und ihr Nervennetz unabhängig vom Nervensystem des Protoscolex ist wird angenommen dass es als Neuroendokrinsystem dient. Mit Hilfe von Genomanalysen wurden 22 Neuropeptidgene im Genom von E. multilocularis entdeckt. Viele von ihnen werden sowohl in Metazestodenvesiklen exprimiert als auch in Primärzellpräparationen, die zu kompletten Vesikeln regenerieren. Das weist auf eine mögliche Rolle dieser Gene in der Metazestodenentwicklung hin. Einhergehend mit dieser Hypothese war ein putatives Neuropeptid (RGFIamide) in der Lage die Vermehrung von Primärzellen bei einer Konzentration von 10-7 M zu stimulieren, dabei war das korrespondierende Gen während der Metazestodenregeneration hochreguliert. KW - Fuchsbandwurm KW - Echinococcus multilocularis KW - Stammzelle KW - Larve Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-105040 ER - TY - THES A1 - Jansch, Charline T1 - Effects of SLC2A3 copy number variants on neurodevelopment and glucose metabolism in ADHD patient-specific neurons T1 - Effekte der SLC2A3 Kopienzahlvarianten auf Neuroentwicklung und Glukosemetabolismus in ADHS Patienten-spezifischen Neuronen N2 - Neuropsychiatric disorders, such as attention-deficit/hyperactivity disorder (ADHD), represent a burden which deeply impair the patient’s life. Neurobiological research has therefore increasingly focused on the examination of brain neurotransmitter systems, such as the serotonin (5-HT) system, since a dysfunction has been repeatedly implicated in the pathology of these diseases. However, investigation of functional human neurons in vitro has been restricted by technical limitations for a long time until the discovery of human induced pluripotent stem cells (iPSCs) revolutionized the field of experimental disease models. Since the pathogenesis of neuropsychiatric disorders involves a complex genetic component, genome-wide association studies (GWAS) revealed numerous risk genes that are associated with an increased risk for ADHD. For instance, the novel ADHD candidate gene SLC2A3 which encodes the glucose transporter-3 (GLUT3), facilitates the transport of glucose across plasma membranes and is essential for the high energy demand of several cell types, such as stem cells and neurons. Specifically, copy number variants (CNVs) of SLC2A3 might therefore impact cerebral glucose metabolism as well as the assembly of synaptic proteins in human neurons which might contribute to the pathogenesis of ADHD. We hypothesized that an altered SLC2A3 gene dosage in human neurons can exert diverse protective or detrimental effects on neurodevelopmental processes as well as the coping of glucometabolic stress events, such as hypo- and hyperglycaemic conditions. The generation of specific iPSC lines from ADHD patients and healthy probands served as basis to efficiently differentiate stem cells into 5-HT specific neurons. Using this neuronal culture, we were able to examine effects of SLC2A3 CNVs on the basal expression of SCL2A3 and GLUT3 in human neurons. Furthermore, the focus was on potentially altered coping of the cells with glucose deprivation and the treatment with specific high- and low glycaemic media. High-resolution fluorescence imaging in combination with electrophysiological and molecular biological techniques showed that: 1) The generated human iPSCs are fully reprogrammed human stem cells showing typical characteristics of embryonic stem cell-like morphology, growth behaviour, the ability to differentiate into different cell types of the human body and the expression of pluripotency-specific markers. 2) The neuronal subtype derived from our stem cells display typical characteristics of 5-HT specific median and dorsal neurons and forms synapses reflected by the expression of pre- and postsynaptic proteins. 3) Even if SLC2A3 CNVs influence SLC2A3 and GLUT3 basal expression, no significant alterations in gene and protein expression caused by hyper- and hypoglycaemic conditions, nor in the assembly of proteins associated with synapse formation could be observed in human iPSC-derived neurons. N2 - Neuropsychiatrische Erkrankungen, wie das Aufmerksamkeits-Defizit/Hyperaktivitäts-Syndrom (ADHS), stellen eine Belastung dar, die das Leben des Patienten schwerwiegend beeinträchtigen. Die neurobiologische Forschung hat sich deshalb zunehmend auf die Untersuchung der Neurotransmittersysteme des Gehirns, wie das serotonerge (5-HT) System fokussiert, da eine Dysfunktion wiederholt in Zusammenhang mit der Pathogenese solcher Erkrankungen gebracht wurde. Die in vitro-Untersuchung funktioneller humaner Neurone war jedoch lange Zeit durch technische Limitierungen eingeschränkt, bis die Entdeckung humaner induzierter pluripotenter Stammzellen (iPSCs) das Feld der experimentellen Krankheitsmodelle revolutionierte. Da die Pathogenese neuropsychiatrischer Erkrankungen eine komplexe genetische Komponente einschließt, haben genomweite Assoziationsstudien zahlreiche Risikogene aufgedeckt, die mit einem erhöhten Risiko für ADHS assoziiert werden. Das Kandidatengen SLC2A3, das den Glukosetransporter-3 (GLUT3) codiert, ermöglicht beispielsweise den Transport von Glukose über Plasmamembranen und ist somit essenziell für die hohe Energieanforderung verschiedenster Zelltypen, wie etwa Stammzellen und Neurone. Im Besonderen könnten die Kopienzahlvarianten (CNVs) des Gens SLC2A3 daher den cerebralen Glukosemetabolismus, sowie die Ansammlung synaptischer Proteine beeinflussen und so zur Pathogenese des ADHS beitragen. Wir nahmen an, dass eine veränderte SLC2A3-Gendosis in humanen Neuronen diverse protektive oder schädliche Effekte auf Neuroentwicklungsprozesse, sowie den Umgang mit glukometabolischen Stress-Ereignissen, wie etwa hypo- und hyperglykämische Bedingungen haben könnte. Die Generierung spezieller iPSC-Linien von ADHS-Patienten und gesunden Probanden diente als Basis, um Stammzellen effizient in 5-HT spezifische Neurone zu differenzieren. Diese neuronale Kultur ermöglichte uns die Untersuchung der Effekte der SLC2A3 CNVs auf die Basalexpression von SLC2A3 und GLUT3 in humanen Neuronen. Des Weiteren war der Focus auf einen potenziell veränderten Umgang der Zellen mit Glukoseentzug und der Behandlung mit speziellen hoch- und niederglykämischen Medien. Hochauflösende Fluoreszenzaufnahmen in Kombination mit elektrophysiologischen und molekularbiologischen Techniken zeigten, dass: 1) Die generierten human iPSCs vollständig reprogrammierte humane Stammzellen sind, die die typischen Merkmale der embryonalen Stammzell-Morphologie, des Wachstumsverhaltes, der Fähigkeit in verschiedenste Zelltypen des menschlichen Körpers zu differenzieren und der Expression Pluripotenz-assoziierter Marker aufweisen. 2) Der neuronale Subtyp, der aus unseren Stammzellen generiert wurde, die typischen Charakteristiken medianer und dorsaler 5-HT Neurone aufweist und Synapsen formt, verdeutlicht durch die Expression prä- und postsynaptischer Proteine. 3) Selbst wenn die SLC2A3 CNVs einen Einfluss auf die basale Gen- und Proteinexpression haben, zeigte sich jedoch in humanen iPSC-erzeugten Neuronen keine signifikante Veränderung der Gen- und Proteinexpression aufgrund hyper- und hypoglykämischer Konditionen, noch der Ansammlung der Proteine, die mit der Formation der Synapsen assoziiert sind. KW - Stammzelle KW - Induzierte pluripotente Stammzelle KW - Aufmerksamkeitsdefizit-Syndrom KW - Kopienzahlvariation KW - Duplikation KW - SLC2A3 KW - Deletion Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216201 ER - TY - THES A1 - Herz, Michaela T1 - Genome wide expression profiling of Echinococcus multilocularis T1 - Genomweite Expressionsanalysen von Echinococcus multilocularis N2 - Alveolar echinococcosis, which is caused by the metacestode stage of the small fox tapeworm Echinococcus multilocularis, is a severe zoonotic disease with limited treatment options. For a better understanding of cestode biology the genome of E. multilocularis, together with other cestode genomes, was sequenced previously. While a few studies were undertaken to explore the E. multilocularis transcriptome, a comprehensive exploration of global transcription profiles throughout life cycle stages is lacking. This work represents the so far most comprehensive analysis of the E. multilocularis transcriptome. Using RNA-Seq information from different life cycle stages and experimental conditions in three biological replicates, transcriptional differences were qualitatively and quantitatively explored. The analyzed datasets are based on samples of metacestodes cultivated under aerobic and anaerobic conditions as well as metacestodes obtained directly from infected jirds. Other samples are stem cell cultures at three different time points of development as well as non-activated and activated protoscoleces, the larval stage that can develop into adult worms. In addition, two datasets of metacestodes under experimental conditions suitable for the detection of genes that are expressed in stem cells, the so-called germinative cells, and one dataset from a siRNA experiment were analyzed. Analysis of these datasets led to expression profiles for all annotated genes, including genes that are expressed in the tegument of metacestodes and play a role in host-parasite interactions and modulation of the host's immune response. Gene expression profiles provide also further information about genes that might be responsible for the infiltrative growth of the parasite in the liver. Furthermore, germinative cell-specific genes were identified. Germinative cells are the only proliferating cells in E. multilocularis and therefore of utmost importance for the development and growth of the parasite. Using a combination of germinative cell depletion and enrichment methods, genes with specific expression in germinative cells were identified. As expected, many of these genes are involved in translation, cell cycle regulation or DNA replication and repair. Also identified were transcription factors, many of which are involved in cell fate commitment. As an example, the gene encoding the telomerase reverse transcriptase (TERT) was studied further. Expression of E. multilocularis tert in germinative cells was confirmed experimentally. Cell culture experiments indicate that TERT is required for proliferation and development of the parasite, which makes TERT a potentially interesting drug target for chemotherapy of alveolar echinococcosis. Germinative cell specific genes in E. multilocularis also include genes of densoviral origin. More than 20 individual densovirus loci with information for non-structural and structural densovirus proteins were identified in the E. multilocularis genome. Densoviral elements were also detected in many other cestode genomes. Genomic integration of these elements suggests that densovirus-based vectors might be suitable tools for genetic manipulation of tapeworms. Interestingly, only three of more than 20 densovirus loci in the E. multilocularis genome are expressed. Since the canonical piRNA pathway is lacking in cestodes, this raises the question about potential silencing mechanisms. Exploration of RNA-Seq information indicated natural antisense transcripts as a potential gene regulation mechanism in E. multilocularis. Preliminary experiments further suggest DNA-methylation, which was previously shown to occur in platyhelminthes, as an interesting avenue to explore in future. The transcriptome datasets also contain information about genes that are expressed in differentiated cells, for example the serotonin transporter gene that is expressed in nerve cells. Cell culture experiments indicate that serotonin and serotonin transport play an important role in E. multilocularis proliferation, development and survival. Overall, this work provides a comprehensive transcription data atlas throughout the E. multilocularis life cycle. Identification of germinative cell-specific genes and genes important for host-parasite interactions will greatly facilitate future research. A global overview of gene expression profiles will also aide in the detection of suitable drug targets and the development of new chemotherapeutics against alveolar echinococcosis. N2 - Alveoläre Echinokokkose wird durch das Metazestodenstadium des kleinen Fuchsbandwurms Echinococcus multilocularis verursacht und medizinisch als eine schwere Zoonose mit begrenzten Behandlungsmöglichkeiten betrachtet. Um ein besseres Verständnis für die Biologie der Zestoden zu erlangen, wurde das Genom von E. multilocularis, zusammen mit denen anderer Zestoden, bereits sequenziert. Bisher wurden nur wenige Studien zum Transkriptom von E. multilocularis durchgeführt und eine umfassende Analyse der Transkriptionsprofile über verschiedene Stadien des Lebenszyklus hinweg fehlt bislang. Diese Arbeit stellt die bisher umfassendste Untersuchung des Transkriptoms von E. multilocularis dar. Unterschiede in der Genexpression in verschiedenen Stadien des Lebenszyklus und unter experimentellen Bedingungen wurden qualitativ und quantitativ untersucht. Dazu wurden Daten aus RNA-Sequenzierungen in drei biologischen Replikaten verwendet. Die untersuchten Datensätze beruhen auf Proben von Metazestoden, die unter aeroben und anaeroben Bedingungen kultiviert, sowie von Metazestoden, die direkt aus Gerbilen isoliert wurden. Weitere Proben umfassen Stammzellkulturen zu drei verschiedenen Entwicklungszeitpunkten sowie nicht-aktivierte und aktivierte Protoskolizes, das Larvenstadium das sich zu Adulten entwickeln kann. Zusätzlich wurden zwei Datensätze von Metazestoden unter experimentellen Bedingungen, die zur Identifizierung stammzellspezifischer (keimzellspezifischer) Gene geeignet sind, sowie ein Datensatz von einem siRNA-Experiment untersucht. Die Analyse dieser Datensätze führte zu Genexpressionsprofilen für alle annotierten Gene, unter anderem für Gene, die im Tegument des Metazestoden exprimiert werden und eine Rolle spielen bei Wirt-Parasit-Interaktionen und der Modulierung der Immunantwort des Wirts. Genexpressionsprofile liefern zudem Informationen über Gene, die für das infiltrative Wachstum des Parasiten in der Leber verantwortlich sein könnten. Des Weiteren wurden keimzellspezifische Gene identifiziert. Keimzellen sind die einzigen proliferierenden Zellen in E. multilocularis und daher von essentieller Bedeutung für die Entwicklung und das Wachstum des Parasiten. Durch eine Kombination von Keimzelldepletierungs- und Keimzellanreicherungsverfahren wurden Gene mit keimzellspezifischer Expression identifiziert. Wie erwartet, sind viele dieser Gene in der Translation, der Zellzyklusregulation oder DNA-Replikation und –Reparatur involviert. Darüber hinaus wurden keimzellspezifisch exprimierte Transkriptionsfaktoren detektiert, von denen viele in der Festlegung des Zellschicksals eine Rolle spielen. Als Beispiel eines keimzellspezifischen Genes wurde das Gen, das für die reverse Transkriptase (TERT) kodiert, genauer untersucht. Die Expression von E. multilocularis tert in Keimzellen wurde experimentell bestätigt. Zellkulturexperimente weisen darauf hin, dass TERT für die Proliferation und die Entwicklung essentiell ist. TERT ist daher ein potentiell interessantes Wirkstofftarget für die chemotherapeutische Behandlung der alveolären Echinokokkose. Zu den keimzellspezifischen Genen in E. multilocularis gehören auch Gene densoviralen Ursprungs. Es wurden mehr als 20 Densovirusloci mit Informationen für nicht-strukturelle und strukturelle Densovirusproteine im E. multilocularis-Genom identifiziert. Densovirale Elemente wurden auch in vielen anderen Zestodengenomen detektiert. Die genomische Integration dieser Elemente deutet darauf hin, dass densovirus-basierte Vektoren zur genetischen Manipulation von Zestoden geeignet sein könnten. Interessanterweise sind nur drei von mehr als 20 Densovirusloci im E. multilocularis-Genom exprimiert. Da es in Zestoden keinen kanonischen piRNA-Signalweg gibt, stellt sich die Frage nach möglichen Genabschaltungsmechanismen. Die Analyse der RNA-Sequenzierdaten ergab Hinweise auf natürliche Antisense-Transkripte als einen möglichen Genregulationsmechanismus in E. multilocularis. Vorläufige Experimente und bisherige Studien deuten weiterhin darauf hin, dass DNA-Methylierung ein Mechanismus der Genregulation und -abschaltung in Zestoden sein könnte. Die Transkriptionsdaten enthalten auch Informationen zu Genen, die in differenzierten Zellen exprimiert werden, wie zum Beispiel das Serotonintransportergen, das in Nervenzellen exprimiert wird. Zellkulturversuche weisen darauf hin, dass Serotonin und Serotonintransport eine wichtige Rolle bei der Proliferation, der Entwicklung und dem überleben von E. multilocularis spielen. Insgesamt bietet diese Arbeit einen umfassenden Transkriptionsdatenatlas über die Stadien des Lebenszyklus von E. multilocularis. Die Identifizierung von keimzellspezifischen Genen und Genen, die für die Interaktion zwischen Wirt und Parasit wichtig sind, wird die zukünftige Forschung erheblich erleichtern. Ein globaler Überblick über die Genexpressionsprofile wird zudem hilfreich sein bei der Entdeckung geeigneter Wirkstofftargets und bei der Entwicklung neuer Chemotherapeutika gegen die alveoläre Echinokokkose. KW - Fuchsbandwurm KW - Serotonin KW - Telomerase KW - Stammzelle KW - Transkriptomanalyse KW - foxtapeworm KW - transcriptome data analysis KW - germinative cell Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203802 ER - TY - THES A1 - Ahmad, Ruhel T1 - Neurogenesis from parthenogenetic human embryonic stem cells T1 - Neurogenese von parthenogenetischen humanen embryonalen Stammzellen N2 - Imprinted genes play important roles in brain development. As the neural developmental capabilities of human parthenogenetic embryonic stem cells (hpESCs) with only a maternal genome were not assessed in great detail, hence here the potential of hpESCs to differentiate into various neural subtypes was determined. In addition DNA methylation and expression of imprinted genes upon neural differentiation was also investigated. The results demonstrated that hpESC-derived neural stem cells (hpNSCs) showed expression of NSC markers Sox1, Nestin, Pax6, and Musashi1 (MS1), the silencing of pluripotency genes (Oct4, Nanog) and the absence of activation of neural crest (Snai2, FoxD3) and mesodermal (Acta1) markers. Moreover, confocal images of hpNSC cultures exhibited ubiquitous expression of NSC markers Nestin, Sox1, Sox2 and Vimentin. Differentiating hpNSCs for 28 days generated neural subtypes with neural cell type-specific morphology and expression of neuronal and glial markers, including Tuj1, NeuN, Map2, GFAP, O4, Tau, Synapsin1 and GABA. hpNSCs also responded to region-specific differentiation signals and differentiated into regional phenotypes such as midbrain dopaminergic- and motoneuron-type cells. hpESC-derived neurons showed typical neuronal Na+/K+ currents in voltage clamp mode, elicited multiple action potentials with a maximum frequency of 30 Hz. Cell depicted a typical neuron-like current pattern that responded to selective pharmacological blockers of sodium (tetrodotoxin) and potassium (tetraethylammonium) channels. Furthermore, in hpESCs and hpNSCs the majority of CpGs of the differentially methylated regions (DMRs) KvDMR1 were methylated whereas DMR1 (H19/Igf2 locus) showed partial or complete absence of CpG methylation, which is consistent with a parthenogenetic (PG) origin. Upon differentiation parent-of-origin-specific gene expression was maintained in hpESCs and hpNSCs as demonstrated by imprinted gene expression analyses. Together this shows that despite the lack of a paternal genome, hpNSCs are proficient in differentiating into glial- and neuron-type cells, which exhibit electrical activity similar to newly formed neurons. Moreover, maternal-specific gene expression and imprinting-specific DNA-methylation are largely maintained upon neural differentiation. hpESCs are a means to generate histocompatible and disease allele-free ESCs. Additionally, hpESCs are a unique model to study the influence of imprinting on neurogenesis. N2 - Imprinted Gene spielen eine wichtige Rolle bei der Gehirnentwicklung. Da das neurale Entwicklungspotenzial von hpESCs bisher noch nicht ausführlich untersucht wurde, war das Ziel dieser Arbeit das Differenzierungspotenzial von hpESCs zu verschiedenen neuralen Subtypen zu untersuchen. Außerdem wurden die DNA-Methylierung und Expression imprinted Gene in hpESCs während der neuralen Differenzierung analysiert. Die Ergebnisse zeigten, dass von hpESCs abgeleitete neurale Stammzellen (hpNSCs) die NSC-Marker Sox1, Nestin, Pax6 und Musashi1 (MS1) exprimierten, Pluripotenzmarker-Gene (Oct4, Nanog) abschalteten und keine Aktivierung von Markern der Neuralleistenzellen (Snai2, FoxD3) sowie dem mesodermalen Marker Acta1 stattfand. Immunfärbungen zeigten weiterhin, dass aus hpESCs abgeleitete Stammzellen die NSC-Marker Nestin, Sox1, Sox2 und Vimentin auf Proteinebene exprimierten. Durch gerichtete neurale Differenzierung für 28 Tage konnten aus hpESCs neurale Subtypen abgeleitet werden, die eine neurale Zelltyp-spezifische Morphologie aufweisen und positiv für neuronale und gliale Marker wie Tuj1, NeuN, Map2, GFAP, O4, Tau, Synapsin1 und GABA sind. Um aus hpNSCs dopaminerge und Motoneuronen abzuleiten, wurden während der Differenzierung Morphogene und trophische Faktoren zugegeben. Elektrophysiologische Analysen konnten zeigen, dass die in vitro differenzierten Neuronen, die von hpESCs abgeleitet wurden, für Neurone typische Na+/K+ Ströme sowie Aktionspotentiale (30 Hz) vorweisen ausbilden und auf ausgewählte pharmakologische Natrium- (Tetrodotoxin) und Kalium- (Tetraethylammonium) Kanal-Blocker reagierten. Desweiteren war der Großteil der CpGs von differentiell methylierten Regionen (DMRs) KvDMR1 in hpESCs und hpNSCs methyliert, während DMR1 (H19/Igf2 Locus) eine partiell oder komplett abwesende CpG-Methylierung zeigte, was dem parthenogenetischen Ursprung entspricht. Während der Differenzierung wurde die elternabhängige (parent-of-origin) spezifische Genexpression in hpESCs und hpNSCs aufrechterhalten, wie mit Genexpressionsanalysen imprinted Gene gezeigt werden konnte. In der Summe zeigen die hier dargestellten Ergebnisse, dass hpESCs, die kein paternales Genom besitzen, keine Beeinträchtigung im neuralen Differenzierungspotential zeigten und zu Gliazellen und Neurone differenziert werden konnten. Elektrophysiologische Analysen zeigten ferner, dass von hpESCs abgeleitete Neurone funktionell sind. Zudem wird die Expression maternal-spezifischer Gene und die Imprinting-spezifische DNA-Methylierung während der Differenzierung größtenteils aufrechterhalten. In der Summe stellen hpESCs ein einzigartiges Modell dar, um den Einfluss des Imprintings auf die Neurogenese zu untersuchen. KW - Embryonale Stammzelle KW - Neurogenese KW - Zelldifferenzierung KW - Stammzelle KW - human parthenogenetic stem cells KW - in vitro neural differentiation KW - human parthenogenetic neural stem cells KW - PG neurons KW - imprinting. Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75935 ER -