TY - THES A1 - Werner, Christian T1 - Effect of autoantibodies targeting amphiphysin or glutamate decarboxylase 65 on synaptic transmission of GABAergic neurons T1 - Einfluss von Autoantikörpern gegen Amphiphysin oder Glutamatdecarboxylase 65 auf synaptische Transmission GABAerger Neurone N2 - The number of newly detected autoantibodies (AB) targeting synaptic proteins in neurological disorders of the central nervous system (CNS) is steadily increasing. Direct interactions of AB with their target antigens have been shown in first studies but the exact pathomecha-nisms for most of the already discovered AB are still unclear. The present study investigates pathophysiological mechanisms of AB-fractions that are associated with the enigmatic CNS disease Stiff person syndrome (SPS) and target the synaptically located proteins amphiphysin or glutamate decarboxylase 65 (GAD65). In the first part of the project, effects of AB to the presynaptic endocytic protein amphiphysin were investigated. Ultrastructural investigations of spinal cord presynaptic boutons in an es-tablished in-vivo passive-transfer model after intrathecal application of human anti-amphiphysin AB showed a defect of endocytosis. This defect was apparent at high synaptic activity and was characterized by reduction of the synaptic vesicle pool, clathrin coated vesi-cles (CCVs), and endosome like structures (ELS) in comparison to controls. Molecular inves-tigation of presynaptic boutons in cultured murine hippocampal neurons with dSTORM microscopy after pretreatment with AB to amphiphysin revealed that marker proteins involved in vesicle exocytosis (synaptobrevin 2 and synaptobrevin 7) had an altered expression in GA-BAergic presynapses. Endophilin, a direct binding partner of amphiphysin also displayed a disturbed expression pattern. Together, these results point towards an anti-amphiphysin AB-induced defective organization in GABAergic synapses and a presumably compensatory rearrangement of proteins responsible for CME. In the second part, functional consequences of SPS patient derived IgG fractions containing AB to GAD65, the rate limiting enzyme for GABA synthesis, were investigated by patch clamp electrophysiology and immunohistology. GABAergic neurotransmission at low and high activity as well as short term plasticity appeared normal but miniature synaptic potentials showed an enhanced frequency with constant amplitudes. SPS patient IgG after preabsorption of GAD65-AB using recombinant GAD65 still showed specific synaptic binding to neu-rons and brain slices supporting the hypothesis that additional, not yet characterized AB are present in patient IgG responsible for the exclusive effect on frequency of miniature potentials. In conclusion, the present thesis uncovered basal pathophysiological mechanisms underlying paraneoplastic SPS induced by AB to amphiphysin leading to disturbed presynaptic architec-ture. In idiopathic SPS, the hypothesis of a direct pathophysiological role of AB to GAD65 was not supported and additional IgG AB are suspected to induce distinct synaptic malfunction. N2 - Die Anzahl neu charakterisierter Autoantikörper (AAK) gegen synaptische Proteine bei Er-krankungen des zentralen Nervensystems (ZNS) ist stetig wachsend. Direkte Interaktionen der AAK mit ihren Zielantigenen konnten in ersten Studien belegt werden, jedoch besteht weiterhin Unklarheit über die exakten zugrunde liegenden Pathomechanismen. In der vorliegenden Arbeit wurden pathophysiologische Mechanismen von AAK gegen die synaptisch lokalisierten Proteine Amphiphysin und Glutamatdecarboxylase 65 (GAD65) untersucht, die mit der ZNS Erkrankung Stiff Person Syndrom (SPS) assoziiert sind. Im ersten Projektteil wurden die Effekte von AAK gegen das Endozytoseprotein Amphiphysin analysiert: in einem etablierten in-vivo Tiermodell konnten nach intrathekalem passiven Transfer von AAK gegen Amphiphysin ultrastrukturelle Untersuchungen von präsynaptischen Terminalen im Rückenmark eine Störung der Endozytose aufzeigen. Dieser Defekt, der bei hoher synaptischer Aktivität eintrat, war durch eine Verminderung synaptischen Vesikelpools, Clathrin-ummantelter Vesikel und endosomähnlicher Strukturen charakterisiert. Molekulare Untersuchungen präsynaptischer Terminale kultivierter hippokampaler Zellkulturen mit dSTORM Mikroskopie zeigten, dass an der Exozytose beteiligte synaptische Vesikelproteine (Synaptobrevin 2 und Synaptobrevin 7) ein verändertes Expressionsmuster innerhalb GA-BAerger Synapsen aufweisen. Die Expression von Endophilin, einem direkten Bindungs-partner von Amphiphysin, war ebenso verändert. Zusammengefasst weisen diese Ergebnis-se auf einen Organisationsdefekt GABAerger Synapsen hin, die durch anti-Amphiphysin AAK induziert sind und eine kompensatorische Umverteilung von Endozytoseproteinen vermuten lassen. Im zweiten Teil der Arbeit wurden die funktionellen Effekte von SPS AAK gegen GAD65, dem geschwindigkeitsbestimmenden Enzym der GABA-Synthese, mittels Patch-Clamp Mes-sungen und Immunhistologie untersucht. Die GABAerge synaptische Übertragung bei niedri-ger als auch hoher synaptischer Aktivität sowie die synaptische Kurzzeitplastizität wurden durch die IgG Fraktionen mit GAD65-AAK nicht beeinträchtigt. Die Frequenz von GABAergen Miniaturpotentialen war jedoch bei ansonsten gleichbleibender Amplitude erhöht. SPS-Patienten-IgG zeigte allerdings auch nach Präabsorbtion von GAD65-AAK mit Hilfe von rekombinanten GAD65 eine spezifische Anfärbung neuronaler Synapsen, was die Hypothese von weiteren, funktionell wirksamen, aber noch nicht identifizierten AAK im Patienten-IgG unterstützt. Zusammenfassend konnten in der vorliegenden Arbeit grundlegende pathophysiologische Mechanismen aufgezeigt werden, wie pathogene Antikörper gegen Amphiphysin die Struktur präsynaptischer Boutons beeinträchtigen können. Im Falle des idiopathischen SPS konnte keine unterstützenden Befunde für die Hypothese einer direkten pathophysiologischen Rolle von GAD65 AAK erhoben werden. Nach den vorliegenden Ergebnissen wird das Vorhandensein weiterer, derzeit noch nicht beschriebener IgG AAK postuliert, die die synaptische Fehlfunktion erklären können. KW - Autoaggressionskrankheit KW - Zentralnervensystem KW - Stiff person syndrome KW - autoimmunity KW - glutamate decarboxylase 65 KW - amphiphysin KW - Synapse KW - Glutamat-Decarboxylase KW - Autoimmunität KW - Endocytose Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-105648 ER - TY - THES A1 - Reddy, Edamakanti Chandrakanth T1 - Role of differential phosphorylation of c-Jun N-terminal domain in degenerative and inflammatory pathways of CNS T1 - Die Rolle der unterschiedlichen Phosphorylierung von c-Jun N-terminale Domäne bei degenerativen und entzündlichen Wirkungen im Nervengewebe N2 - In this study we have investigated the possible role of c-Jun and it’s activation by the JNK pathway in neuronal cell death and in the inflammatory response of activated astrocytes. The first part of this thesis focuses on the role of site specific phosphorylation of c-Jun in neuronal cell death. The second part focuses on the function of c-Jun in LPS-mediated activation of Bergmann glia cells. In the nervous system, activation of c-Jun transcription factor by different isoforms of c-Jun N-terminal kinase (JNK) functions in various cellular programs, including neurite outgrowth, repair and apoptosis. Yet, the regulatory mechanism underlying the functional dichotomy of c-Jun remains to be elucidated. Serine (S) 63/73 and threonine (T) 91/93 of c-Jun are the target phosphorylation sites for JNKs in response to various stimuli. Yet, these two groups of phosphorylation sites are differentially regulated in vivo, as the S63/73 sites are promptly phosphorylated upon JNK activation, whereas T91/93 phosphorylation requires a priming event at the adjacent T95 site. In our study, we used cerebellar granule cell (CGC) apoptosis by trophic/potassium (TK) deprivation as a model system to investigate the regulation and function of site-specific c-Jun phosphorylation at the S63 and T91/T93 JNK-sites in neuronal cell death. In this model system, JNK induces pro-apoptotic genes through the c-Jun/Ap-1 transcription factor. On the other side, a survival pathway initiated by lithium leads to repression of pro-apoptotic c-Jun/Ap-1 target genes without interfering with JNK activity. Yet, the mechanism by which lithium inhibits c-Jun activity remains to be elucidated. We found that TK-deprivation led to c-Jun phosphorylation at all three JNK sites. However, immunofluorescence analysis of c-Jun phosphorylation at single cell level revealed that the S63 site was phosphorylated in all c-Jun-expressing cells, whereas the response of T91/T93 phosphorylation was more sensitive, mirroring the switch-like apoptotic response of cerebellar granular cells (CGCs). Furthermore, we observed that lithium impaired c-Jun phosphorylation at T91/93, without interfering with S63/73 phosphorylation or JNK activation, suggesting that T91/T93 phosphorylation triggers c-Jun pro-apoptotic activity. Notably, expression of a c-Jun mutant lacking the T95-priming site for T91/93 phosphorylation (c-Jun A95) mimicked the effect of lithium on both cell death and c-Jun site-specific phosphorylation, whereas it was fully able to induce neurite outgrowth in naïve PC12 cells. Vice-versa, a c-Jun mutant bearing aspartate-substitution of T95 overwhelmed lithium-mediate protection of CGCs from TK-deprivation, validating that inhibition of T91/T93/T95 phosphorylation underlies the effect of lithium on cell death. Mass-spectrometry analysis confirmed that c-Jun is phosphorylation at T91/T93/T95 in cells. Moreover, recombinant-JNK phosphorylated c-Jun at T91/T93 in a T95-dependent manner. Based on our results, we propose that T91/T93/T95 phosphorylation of c-Jun functions as a sensitivity amplifier of the JNK cascade, setting the threshold for c-Jun pro-apoptotic activity in neuronal cells. In the central nervous system (CNS), the c-Jun transcription factor has been mainly studied in neuronal cells and coupled to apoptotic and regenerative pathways following brain injury. Besides, several studies have shown a transcriptional role of c-Jun in activated cortical and spinal astrocytes. In contrast, little is known about c-Jun expression and activation in Bergmann glial (BG) cells, the radial cerebellar astrocytes playing crucial roles in cerebellar development and physiology. In this study, we used neuronal/glial cerebellar cultures from neonatal mice to assess putative functions of c-Jun in BG cells. By performing double immunocytochemical staining of c-Jun and two BG specific markers, S100 and GLAST, we observed that c-Jun was highly expressed in radial glial cells derived from Bergmann glia. Bergmann glia-derived cells expressed toll-like receptor (TLR 4) and treatment with bacterial lipopolysaccharide (Le et al.) induced c-Jun phosphorylation at S63, exclusively in BG cells. Moreover, LPS induced IL-1β expression and inhibition of JNK activity abolished both c-Jun phosphorylation and the increase of IL-1β mRNA. Notably, we also observed that LPS failed to induce IL-1β mRNA in neuronal/glial cerebellar cultures generated from conditional knockout mice lacking c-Jun expression in the CNS. These results indicate that c-Jun plays a central role in c-Jun in astroglial-specific induction of IL-1β. Furthermore, we confirmed in vivo that c-Jun is expressed in BG cells, during the formation of the BG monolayer. Altogether, our finding underlines a putative role of c-Jun in astroglia-mediated neuroinflammatory dysfunctions of the cerebellum. N2 - In dieser Studie wurde die Rolle des Transkriptionsfaktors c-Jun sowie seine Aktivierung durch den JNK Signalweg beim neuronalen Zelltod und bei der entzündlichen Reaktion von aktivierten Astrozyten untersucht. Der erste Teil dieser Arbeit beschäftigt sich mit der Rolle von mehrfacher c-Jun Phosphorylierung an den Aminosäuren Threonin 91/93/95 beim neuronalen Zelltod. Der zweite Teil konzentriert sich auf die Rolle von c-Jun und seine Transaktivierung in LPS-vermittelter Aktivierung von Bergmann Gliazellen. Als Modellsystem für den neuronalen Zelltod wurde die Apoptose von cerebellären Granularzellen (CGC) durch trophische Granulazellen Kaliumkonzentration-Erniedrigung (TK) verwendet, da es ein Modell der Um das ist, das Zusammenspiel von pro-apoptotischen und pro-Überleben Signalwegen beim neuronalen Zelltod zu studieren. In diesem Modell induziert die c-Jun N-terminale Kinase (JNK) pro-apoptotische Gene durch den c-Jun/Ap-1 Transkriptionsfaktor. Auf der anderen Seite, führt ein Lithium-induzierter Überleben-Signalweg zur Unterdrückung der pro-apoptotischen c-Jun/Ap-1 Zielgene, ohne Interferenz mit JNK Aktivität. Es blieb jedoch der Mechanismus zu klären, durch den Lithium c-Jun-Aktivität hemmt. In der Arbeit wurde dieses Modellsystem benutzt, um die Regulation und Funktion der c-Jun-Phosphorylierung durch JNK an den Stellen S63 und T91/T93 beim neuronalen Zelltod zu studieren. Es wurde gefunden, dass TK-Kaliumerniedrigung zu c-Jun phosphorylierung führte und zwar an allen drei durch JNK phosphorylierbaren Ser/Thr (JNK-Stellen). Immunfluoreszenzanalyse von c-Jun Phosphorylierung auf Einzel-Zell-Ebene ergab jedoch, dass die S63-Stelle in allen c-Jun-exprimierenden Zellen phosphoryliert wurde, während T91/T93 Phosphorylierung empfindlicher war, analog zur Schalter-ähnlichen apoptotischen Antwort von CGCs. Umgekehrt verhinderte Lithium T91 und T93 Phosphorylierung und Zelltod ohne Wirkung auf die S63-Seite, was darauf hindeutet, dass T91/T93 Phosphorylierung durch c-Jun eine pro-apoptotische Aktivität auslöst. Dementsprechend schützte eine c-Jun-Mutation, der die T95 Priming-Stelle für T91/93 Phosphorylierung fehlt (T95A), CGCs vor Apoptose, wohingegen T95A Neuriten-wachstum in PC12-Zellen induzieren konnte. Umgekehrt führte eine c-Jun Mutante mit Aspartat-Substitution von T95 (T95D ) zur Aufhebung der schützenden Wirkung von Lithium auf CGC Apoptose, wodurch bestätigt wurde, dass die Inhibierung der T91/T93/T95 Phosphorylierung der Wirkung von Lithium auf den Zelltod zugrundeliegt. Massenspektrometrie-Analyse bestätigte multiple Phosphorylierung von c-Jun an T91/T93/T95 in den Zellen. Außerdem wurde rekombinantes c-Jun durch JNK an T91/T93 in einer T95-abhängigen Weise phosphoryliert. Basierend auf diesen Ergebnissen wird vorgeschlagen, dass T91/T93/T95 phosphorylierung von c-Jun als Empfindlichkeit-Verstärker der JNK-Kaskade fungiert, der die Schwelle für die pro-apoptotische Aktivität von c-Jun in neuronalen Zellen einstellt. Im zentralen Nervensystem (ZNS) wurde die Rolle des c-Jun Transkriptionsfaktors hauptsächlich bei neuronalem Zelltod und bei neuronaler Regeneration nach Hirnschädigung untersucht. Außerdem wurde auch eine Rolle für c-Jun bei der Transkription in aktivierten kortikalen und spinalen Astrozyten beschrieben. Im Gegensatz dazu ist wenig bekannt über die Expression von c-Jun und dessen Transaktivierung in Bergmann Gliazellen (BG)-Zellen, die eine entscheidende Rolle bei der Entwicklung des Kleinhirns und dessen Physiologie spielen. In dieser Arbeit wurde die putative Rolle von c-Jun bei kultivierten neuronalen/BG-Zellen aus dem Maus-Kleinhirn untersucht. Immunfluoreszenzanalyse von c-Jun und zwei für BG-Zellen spezifische Marker, S100 und GLAST, ergab, dass c-Jun in BG-Zellen hoch exprimiert wurde. Außerdem wurde gefunden, dass der Toll-like Rezeptor TLR4 in BG-Zellen exprimiert ist und dass die Behandlung mit bakteriellem Lipopolysaccharid (Le et al.) die c-Jun- Phosphorylierung an S63 induziert. Zusätzlich wurde gefunden, dass LPS IL-1b Expression induziert und die Inhibierung von JNK Aktivität verhinderte sowohl c-Jun-Phosphorylierung, als auch die Zunahme von IL-1 b mRNA. Insbesondere konnte LPS die IL-1b mRNA-Produktion in neuronalen / BG-Kulturen aus konditionellen Knockout Mäusen, denen c-Jun im ZNS fehlte, nicht induzieren, womit gezeigt wurde, dass c-Jun bei der Astroglia-spezifischen Induktion von IL-1 b essentiell ist. Immunohistochemische Analyse von c-Jun-exprimierenden Zellen im postnatalen Kleinhirn bestätigte in-vivo die Expression von c-Jun in BG Zellen und förderte eine dynamische Expression von c-Jun während der Entwicklung der BG Monolayer zutage. Insgesamt unterstreichen die Befunde dieser Arbeit eine wahrscheinliche Rolle von c-Jun bei Astroglia-vermittelten neuroinflammatorischen Funktionsstörungen des Kleinhirns. KW - Jun KW - c-Jun Phosphorylierung KW - JNK KW - neuronal cell death KW - Licl KW - degeneratives Nervengewebe KW - Zelltod KW - Zentralnervensystem KW - Astrozyt Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90748 ER - TY - THES A1 - Knorr, Susanne T1 - Pathophysiology of early-onset isolated dystonia in a DYT-TOR1A rat model with trauma-induced dystonia-like movements T1 - Pathophysiologie der früh beginnenden, isolierten Dystonie in einem DYT-TOR1A Rattenmodell mit Trauma-induzierten Dystonie-ähnlichen Bewegungen N2 - Early-onset torsion dystonia (DYT-TOR1A, DYT1) is an inherited hyperkinetic movement disorder caused by a mutation of the TOR1A gene encoding the torsinA protein. DYT-TOR1A is characterized as a network disorder of the central nervous system (CNS), including predominantly the cortico-basal ganglia-thalamo-cortical loop resulting in a severe generalized dystonic phenotype. The pathophysiology of DYTTOR1A is not fully understood. Molecular levels up to large-scale network levels of the CNS are suggested to be affected in the pathophysiology of DYT-TOR1A. The reduced penetrance of 30% - 40% indicates a gene-environmental interaction, hypothesized as “second hit”. The lack of appropriate and phenotypic DYT-TOR1A animal models encouraged us to verify the “second hit” hypothesis through a unilateral peripheral nerve trauma of the sciatic nerve in a transgenic asymptomatic DYT-TOR1A rat model (∆ETorA), overexpressing the human mutated torsinA protein. In a multiscale approach, this animal model was characterized phenotypically and pathophysiologically. Nerve-injured ∆ETorA rats revealed dystonia-like movements (DLM) with a partially generalized phenotype. A physiomarker of human dystonia, describing increased theta oscillation in the globus pallidus internus (GPi), was found in the entopeduncular nucleus (EP), the rodent equivalent to the human GPi, of nerve-injured ∆ETorA rats. Altered oscillation patterns were also observed in the primary motor cortex. Highfrequency stimulation (HFS) of the EP reduced DLM and modulated altered oscillatory activity in the EP and primary motor cortex in nerve-injured ∆ETorA rats. Moreover, the dopaminergic system in ∆ETorA rats demonstrated a significant increased striatal dopamine release and dopamine turnover. Whole transcriptome analysis revealed differentially expressed genes of the circadian clock and the energy metabolism, thereby pointing towards novel, putative pathways in the pathophysiology of DYTTOR1A dystonia. In summary, peripheral nerve trauma can trigger DLM in genetically predisposed asymptomatic ΔETorA rats leading to neurobiological alteration in the central motor network on multiple levels and thereby supporting the “second hit” hypothesis. This novel symptomatic DYT-TOR1A rat model, based on a DYT-TOR1A genetic background, may prove as a valuable chance for DYT-TOR1A dystonia, to further investigate the pathomechanism in more detail and to establish new treatment strategies. N2 - Früh beginnende Torsionsdystonie (DYT-TOR1A, DYT1) ist eine genetisch bedingte hyperkinetische Bewegungsstörung, die aufgrund einer Mutation im TOR1A Gen verursacht wird, welches für das TorsinA-Protein codiert. DYT-TOR1A wird als zentrale Netzwerkstörung bezeichnet und betrifft hauptsächlich die kortiko-striatothalamo-kortikale Funktionsschleife, welches schließlich zu einem schweren generalisierten dystonen Phänotyp führt. Die Pathophysiologie von DYT-TOR1A ist nicht vollständig verstanden, man geht jedoch davon aus, dass Ebenen im Zentralnervensystem von molekularer Basis bis hin zu ganzen Netzwerken betroffen sind. Die reduzierte Penetranz von nur 30% bis 40% deutet auf eine Gen-UmweltInteraktion hin, im Sinne einer „2-Treffer-Hypothese“. Auch das Fehlen eines adäquaten DYT-TOR1A Tiermodelles hat uns dazu veranlasst, die „2-TrefferHypothese“ zu verifizieren, indem eine unilaterale periphere Quetschläsion des Nervus ischiadicus in einem transgenen, asymptomatischen DYT-TOR1A Rattenmodell (∆ETorA) durchgeführt wurde, welches das humane mutierte TorsinA-Protein überexprimiert. Das Tiermodell wurde phänotypisch und pathophysiologisch auf verschiedenen Analysenebenen charakterisiert. ∆ETorA Ratten mit Quetschläsion entwickelten Dystonie-ähnliche Bewegungen (DLM) mit teilweise generalisiertem Phänotyp. Erhöhte Theta-Oszillationen im Globus pallidus internus (GPi) sind bezeichnend für die humane Dystonie, welche auch im Nucleus entopeduncularis (EP), dem Äquivalent zum humanen GPi, von ∆ETorA Ratten mit Quetschläsion nachgewiesen wurden. Veränderte oszillatorische Muster wurden auch im primären Motorkortex gefunden. Hochfrequenz-Stimulation (HFS) des EP konnte das klinische Erscheinungsbild verbessern und hatte zudem auch einen modulatorischen Effekt auf die veränderte oszillatorische Aktivität des EP und des primären Motorcortex von ∆ETorA Ratten mit Quetschläsion. Auch das veränderte dopaminerge System erwies sich als ein pathologisches Merkmal in ∆ETorA Ratten. Es fand sich eine erhöhte striatale Ausschüttung von Dopamin und ein erhöhter Dopaminumsatz. In der Transkriptomanalyse kamen die zirkadiane Uhr und der Energiemetabolismus als weitere potentielle Signalwege in der Pathophysiologie der DYT-TOR1A Dystonie zum Vorschein. Zusammengefasst konnten DLM in genetisch prädisponierten, asymptomatischen ΔETorA Ratten mittels peripheren Nerventraumas ausgelöst werden, welches zu neurobiologischen Veränderungen in verschiedenen Ebenen des zentralen motorischen Netzwerk führte. Somit konnte die „2-Treffer-Hypothese“ bestätigt werden. Dieses neue symptomatische DYT-TOR1A Rattenmodell, fundiert auf der genetischen Grundlage von DYT-TOR1A, kann sich als wertvolle Möglichkeit für die DYT-TOR1A Dystonie erweisen, um Pathomechanismen genauer zu untersuchen und neue Behandlungsstrategien zu entwickeln. KW - Dystonie KW - Trauma KW - Ratte KW - Zentralnervensystem KW - DYT-TOR1A KW - early-onset isolated dystonia KW - gene-environmental interaction KW - peripheral nerve trauma KW - striatum KW - dopamine KW - deep brain stimulation Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206096 ER -