TY - JOUR A1 - Ziegler, Georg C. A1 - Almos, Peter A1 - McNeill, Rhiannon V. A1 - Jansch, Charline A1 - Lesch, Klaus‐Peter T1 - Cellular effects and clinical implications of SLC2A3 copy number variation JF - Journal of Cellular Physiology N2 - SLC2A3 encodes the predominantly neuronal glucose transporter 3 (GLUT3), which facilitates diffusion of glucose across plasma membranes. The human brain depends on a steady glucose supply for ATP generation, which consequently fuels critical biochemical processes, such as axonal transport and neurotransmitter release. Besides its role in the central nervous system, GLUT3 is also expressed in nonneural organs, such as the heart and white blood cells, where it is equally involved in energy metabolism. In cancer cells, GLUT3 overexpression contributes to the Warburg effect by answering the cell's increased glycolytic demands. The SLC2A3 gene locus at chromosome 12p13.31 is unstable and prone to non‐allelic homologous recombination events, generating multiple copy number variants (CNVs) of SLC2A3 which account for alterations in SLC2A3 expression. Recent associations of SLC2A3 CNVs with different clinical phenotypes warrant investigation of the potential influence of these structural variants on pathomechanisms of neuropsychiatric, cardiovascular, and immune diseases. In this review, we accumulate and discuss the evidence how SLC2A3 gene dosage may exert diverse protective or detrimental effects depending on the pathological condition. Cellular states which lead to increased energetic demand, such as organ development, proliferation, and cellular degeneration, appear particularly susceptible to alterations in SLC2A3 copy number. We conclude that better understanding of the impact of SLC2A3 variation on disease etiology may potentially provide novel therapeutic approaches specifically targeting this GLUT. KW - copy number variation KW - energy metabolism KW - glucose transporter KW - GLUT3 KW - neurodegeneration KW - neurodevelopment KW - SLC2A3 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218009 VL - 235 IS - 12 SP - 9021 EP - 9036 ER - TY - JOUR A1 - Truswell, Arthur Stewart T1 - Medical history of obesity N2 - This paper contains the following sections, in approximate chronological order: Early years, Scientific research on energy metabolism, Clinical teaching, Evidence on health risks, Slow recognition of obesity in diabetes, Depression and war, some Obesity research continued in the 1950s and 1960s, New approaches to management, a Universal standard weight for height, Luxuskonsumption, Calories (incompletely) replaced by Joules, Food intakes of obese people, Genetics, unexpected Surge of obesity from 1980, Diabetes, Scarcity of effective, safe drugs for obesity, Leptin and Ghrelin stimulate basic research, Why has the obesity epidemic happened? What is the best weight-reducing diet? Bariatric surgery KW - Fettsucht KW - Ernährung KW - Diät KW - Stoffwechsel KW - Geschichte KW - obesity KW - nutrition KW - dieting KW - energy metabolism KW - Medical history KW - Obesity history KW - Diabetes history Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78910 ER - TY - JOUR A1 - Talman, Arthur M. A1 - Prieto, Judith H. A1 - Marques, Sara A1 - Ubaida-Mohien, Ceereena A1 - Lawniczak, Mara A1 - Wass, Mark N. A1 - Xu, Tao A1 - Frank, Roland A1 - Ecker, Andrea A1 - Stanway, Rebecca S. A1 - Krishna, Sanjeev A1 - Sternberg, Michael J. E. A1 - Christophides, Georges K. A1 - Graham, David R. A1 - Dinglasan, Rhoel R. A1 - Yates, John R., III A1 - Sinden, Robert E. T1 - Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility JF - Malaria Journal N2 - Background: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. Methods: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. Results: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. Conclusions: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization. KW - glycolysis KW - gamete KW - energy metabolism KW - tandem mass-spectra KW - YoelII-Nigeriensis KW - haemoproteus-columbae KW - chlamydomonas flagella KW - life cycle KW - microtubule motor KW - hexose transporter KW - membrane-protein topology KW - malaria parasite KW - subcellular localization KW - flagellum KW - plasmodium Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115572 N1 - Additional files are available here: http://www.malariajournal.com/content/13/1/315/additional VL - 13 IS - 315 ER - TY - JOUR A1 - Pfeiffer-Guglielmi, Brigitte A1 - Dombert, Benjamin A1 - Jablonka, Sibylle A1 - Hausherr, Vanessa A1 - van Thriel, Christoph A1 - Schobel, Nicole A1 - Jansen, Ralf-Peter T1 - Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons JF - BMC Neuroscience N2 - Background: Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Results: Applying fluorescence in-situ-hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ, however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. Conclusions: We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission. KW - glycogen phosphorylase KW - neuronal primary culture KW - energy metabolism KW - nervous system KW - phosphorylase isozymes KW - brain KW - transport KW - protein synthesis KW - glycolysis KW - roles KW - synthase KW - antibodies KW - immunocytochemical analysis KW - glycogen synthase KW - mRNA localization KW - fluorescence in-situ hybridization Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116049 SN - 1471-2202 VL - 15 IS - 70 ER - TY - THES A1 - Pedrotti, Lorenzo T1 - The SnRK1-C/S1-bZIPs network: a signaling hub in Arabidopsis energy metabolism regulation T1 - Das SnRK1-C/S1-bZIP-Netzwerk: ein Signalknoten in der Regulation des Arabidopsis Energie-Metabolismus N2 - The control of energy homeostasis is of pivotal importance for all living organisms. In the last years emerged the idea that many stress responses that are apparently unrelated, are actually united by a common increase of the cellular energy demand. Therefore, the so called energy signaling is activated by many kind of stresses and is responsible for the activation of the general stress response. In Arabidopsis thaliana the protein family SnF1- related protein kinases (SnRK1) is involved in the regulation of many physiological processes but is more known for its involvement in the regulation of the energy homeostasis in response to various stresses. To the SnRK1 protein family belong SnRK1.1 (also known as KIN10), SnRK1.2 (KIN11), and SnRK1.3 (KIN12). SnRK1 exerts its function regulating directly the activity of metabolic enzymes or those of key transcription factors (TFs). The only TFs regulated by SnRK1 identified so far is the basic leucine zipper (bZIP) 63. bZIP63 belongs to the C group of bZIPs (C-bZIPs) protein family together with bZIP9, bZIP10, and bZIP25. SnRK1.1 phosphorylates bZIP63 on three amino acids residues, serine (S) 29, S294, and S300. The phosphorylation of tbZIP63 is strongly related to the energy status of the plant, shifting from almost absent during the normal growth to strongly phosphorylated when the plant is exposed to extended dark. bZIPs normally bind the DNA as dimer in order to regulate the expression of their target genes. C-bZIPs preferentially form dimers with S1-bZIPs, constituting the so called C/S1- bZIPs network. The SnRk1 dependent phosphorylation of bZIP63 regulates its activation potential and its dimerization properties. In particular bZIP63 shift its dimerization preferences according to its phosphorylation status. The non-phosphorylated form of bZIP63 dimerize bZIP1, the phosphorylates ones, instead, forms dimer with bZIP1, bZIP11, and bZIP63 its self. Together with bZIP63, S1-bZIPs are important mediator of part of the huge transcriptional reprogramming induced by SnRK1 in response to extended dark. S1-bZIPs regulate, indeed, the expression of 4'000 of the 10'000 SnRK1-regulated genes in response to energy deprivation. In particular S1-bZIPs are very important for the regulation of many genes encoding for enzymes involved in the amino acid metabolism and for their use as alternative energy source. After the exposition for some hours to extended dark, indeed, the plant make use of every energy substrate and amino acids are considered an important energy source together with lipids and proteins. Interestingly, S1- bZIPs regulate the expression of ETFQO. ETFQO is a unique protein that convoglia the electrons provenienti from the branch chain amino acids catabolism into the mitochondrial electron transport chain. The dimer formed between bZIP63 and bZIP2 recruits SnRK1.1 directly on the chromatin of ETFQO promoter. The recruitment of SnRK1 on ETFQO promoter is associated with its acetylation on the lysine 14 of the histone protein 3 (K14H3). This chromatin modification is normally asociated with an euchromatic status of the DNA and therefore with its transcriptional activation. Beside the particular case of the regulation of ETFQO gene, S1-bZIPs are involved in the regulation of many other genes activated in response of different stresses. bZIP1 is for example an important mediator of the salt stress response. In particular bZIP1 regulates the primary C- and N-metabolism. The expression of bZIP1, in response of both salt ans energy stress seems to be regulated by SnRK1, as it is the expression of bZIP53 and bZIP63. Beside its involvement in the regulation of the energy stress response and salt response, SnRK1 is the primary activators of the lipids metabolism during see germination. SnRK1, indeed, controls the expression of CALEOSINs and OLEOSINs. Those proteins are very important for lipids remobilization from oil droplets. Without their expression seed germination and subsequent establishment do not take place because of the absence of fuel to sustain these highly energy costly processes, which entirely depend on the catabolism of seed storages. N2 - Die Kontrolle der Energiehomöostase ist für alle lebenden Organismen von großer Bedeutung. In den letzten Jahren kam die Idee auf, dass viele Stressantworten, die scheinbar unabhängig voneinander sind, durch den Energiebedarf doch miteinander verbunden sind. Das sogenannte Energie-Signaling wird von vielen verschiedenen Stress- Arten aktiviert und ist verantwortlich für die Aktivierung der allgemeinen Stressantwort. In Arabidopsis thaliana ist die Proteinfamilie der SnF1-verwandten Proteinkinasen (SnRK1) an der Regulation vieler physiologischer Prozesse beteiligt. Auch bei der Regulation der Energiehomöostase als Folge von Stress spielen SnRK1-Kinasen eine wichtige Rolle. Proteine aus der SnRK1-Familie sind SnRK1.1, auch als KIN10 bezeichnet, SnRK1.2 (KIN11) und SnRK1.3 (KIN12). SnRK1-Proteine können die Aktivität von metabolischen Enzyme oder bestimmten Transkriptionsfaktoren (TF) direkt regulieren. Bislang wurde nur für den basischen Leucin-Zipper (bZIP) TF bZIP63 die Regulation durch SnRK1 gezeigt. bZIP63 gehört zur Gruppe C der bZIP Proteinfamilie (C-bZIP). Ebenfalls zu Gruppe C werden bZIP9, bZIP10 und bZIP25 zugeordnet. SnRK1.1 phosphoryliert das bZIP63- Protein an Serin (S) 29, S294 und S300. Der Grad der Phosphorylierung von bZIP63 steht in direktem Zusammenhang mit dem Energiehaushalt der Pflanze. Unter normalen Bedingungen wird bZIP63 kaum phosphoryliert, während bei verlängerter Nacht bZIP63 stark phosphoryliert wird. bZIP TF bilden untereinander Dimere aus und binden so an die DNA um die Expression ihrer Zielgene zu regulieren. C-bZIP TF bilden bevorzugt Dimere mit bZIP TF der Gruppe S1, bekannt als das C/S1-bZIP-Netzwerk. Die SnRK1-abhängige Phosphorylierung von bZIP63 steuert das Aktivierungspotential und die Dimerisierungseigenschaften. Besonders bei bZIP63 ändern sich die Dimerisierungspartner in Abhängigkeit des Phosphorylierungsgrads. Nicht-phosphoryliert dimerisiert bZIP61 mit bZIP1, im phosphorylierten Zustand dagegen bildet bZIP63 Dimere neben bZIP1 auch mit bZIP11 und bZIP63. S1-bZIP TF sowie bZIP63 sind wichtige Regulatoren der transkriptionellen Reprogrammierung, die durch SnRK1 bei verlängerter Dunkelheit induziert wird. S1-bZIP TF regulieren die Expression von 4'000 der 10'000 durch SnRK1 regulierten Gene in der Energieverarmungsantwort. Besonders S1-bZIP TF sind sehr wichtig für die Regulation vieler Gene, die für Enzyme aus dem Aminosäuremetabolismus codieren und als alternative Energiequelle der Pflanze bekannt sind. Wird die Nacht für einige Stunden verlängert, greift die Pflanze auf jede mögliche Energiequelle zurück. Als Energiequelle werden besonders Aminosäuren, aber auch Lipiden und Proteinen herangezogen. Interessanterweise regulieren S1-bZIP TF die Expression von ETFQO. ETFQO ist ein besonderes Protein, das die Elektronen aus dem Metabolismus verzweigter Aminosäuren in die mitochondriale Elektronentransportkette steuert. Das Dimer aus bZIP63 und bZIP2 rekrutiert SnRK1.1 direkt an das Chromatin des ETFQO-Promotors. Dieser Rekrutierung folgt die Acetylierung des Histonproteins 3 (K14H3) am Lysin 14. Diese Modifikation des Chromatins führt normalerweise zu einem euchromatischen Status der DNA und der nachfolgenden transkriptionellen Aktivierung. Neben der Regulation des ETFQO-Gens sind S1-bZIP TF auch an der Regulation von vielen anderen Genen in Folge von verschiedenen Stressen beteiligt. bZIP1 ist beispielsweise ein wichtiger Regulator der Antwort auf Salz-Stress. Auch der primäre Kohlenstoff- und Stickstoffmetabolismus werden von bZIP1 reguliert. Es wird angenommen, dass die Expression von bZIP1 wie auch von bZIP53 und bZIP63 in der Antwort auf Salzstress und Energieverarmung durch SnRK1 gesteuert wird. Abgesehen von der Regulation der Antwort auf Energieverarmung und Salzstress spielen SnRK1-Proteine auch bei der Aktivierung des Lipidmetabolismus während der Keimung eine Rolle. SnRK1 kontrolliert die Expression von CALEOSINs und OLEOSINs. Diese beiden Proteine sind sehr wichtig für die Mobilisierung von Lipiden aus Öltröpfchen. In Abwesenheit von SnRK1 finden aufgrund von Energiemangel weder die Keimung noch die nachfolgende Entwicklung statt. KW - Ackerschmalwand KW - Homöostase KW - Proteinkinasen KW - Stress-Syndrom KW - SnRK1 KW - bZIPs KW - mitochondria KW - energy metabolism Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116080 ER - TY - THES A1 - Gonnert, Falk Alexander T1 - Entwicklung eines Modells zur mikrokalorimetrischen Analyse der Wirkung pharmakologischer Substanzen auf den Energiestoffwechsel benigner und maligner Zelllinien am Beispiel von 2,4-Dinitrophenol T1 - Establishement of a model for mikrocalorimetric analysis of the effect of pharmacological substances like 2,4-dinitrophenol on the energy metabolism of benign and malign cell lines N2 - Krebs durch gezielte Zerstörung seiner Energien zu besiegen, ist einer von mehreren vielversprechenden neuen experimentellen Therapieansätzen, die insbesondere in den letzten Jahren in den Fokus des Interesses gerückt sind. Die vorliegende Arbeit hatte zum Ziel, ein Modell zu entwickeln, mit dem die Wirkung von 2,4-Dinitrophenol (2,4-DNP), ein Entkoppler der oxidativen Phosphorylierung, auf den Wärmehaushalt einer Vielzahl an benignen und malignen Zelllinien mit der Methode der Mikrokalorimetrie analysiert werden kann. Nach zahlreichen Vorversuchen konnte schließlich ein adäquates Messsystem definiert werden, das den Anforderungen eines großen Stichprobenumfangs gerecht wurde: die zu untersuchenden Zellen wurden auf 200 mm2 großen Glasplättchen als Monolayer kultiviert und in sonderangefertigten Stahlampullen in einem Mediumvolumen von 3.6 ml unter Verwendung eines geschlossenen Mikrokalorimetriesystems hinsichtlich ihrer Wärmeproduktion für eine Dauer von 9 Stunden untersucht. Störfaktoren wie insbesondere Mediumveränderungen oder Substratlimitierungen konnten durch ergänzende Untersuchungen ausgeschlossen werden. Die Vorversuche und erste Datenanalysen der Versuchsreihen mit der pA1-Zelllinie identifizierten einen unerwarteten Störfaktor: die Plättchendichten variierten trotz strikter Standardisierung bei der Kultivierung der Monolayer erheblich. Um diesen Störfaktor in den Datenanalysen zu berücksichtigten, wurde daher eine verlässliche und exakte Methode zur Ermittlung der Plättchendichten gesucht. 3 verschiedenen Methoden wurden hierfür auf ihre Eignung überprüft, bis schließlich der LDH-Test als adäquates Verfahren zur Bestimmung der Plättchendichten ausgewählt wurde. Anschließend erfolgte ein Testdurchlauf mit 4 Zelllinien und 4 unterschiedlichen Dosisstufen 2,4-DNP (zuzüglich der Nulldosis). Nach Durchführung der ersten Versuchsreihen mit der pA1 Zelllinie konnte ein weiterer Störfaktor identifiziert werden: der ‚crowding-Effekt’. Dieser beschreibt das Phänomen, dass mit zunehmender Zellzahl in einer Kultur die Stoffwechselrate und somit auch die Wärmeproduktion einer Zelle abnimmt. Der crowding-Effekt wurde im Rahmen mikrokalorimetrischer Arbeiten unter Verwendung offener Systeme und somit Zellsuspensionen mehrfach beschrieben und diskutiert. Die vorliegende Arbeit konnte einen crowding-Effekt nun auch für Monolayer nachweisen. Für die vorliegenden Daten konnte der Zusammenhang zwischen Wärmeproduktion und Zellzahl mittels Regressionsanalyse mit der mathematischen Funktion lgY=-0.83lgX+6.31 bei einer Verlässlichkeit der Schätzung von R2=0.9003 beschrieben werden. Als spezifische Ursachen für einen crowding-Effekt bei Monolayern wurden angenommen: - Diffusionsprobleme bedingt durch ungerührtes Medium um die Plättchen herum, - wider Erwarten dreidimensionales Wachstum auf den Plättchen, oder, - Wachstumsinhibition durch Kontakthemmung der Zellen auf den Plättchen. Der Störfaktor crowding-Effekt ist auf Grund seines dynamischen Charakters schwierig zu eliminieren. Dennoch konnten Möglichkeiten aufgezeigt werden, das Ausmaß des crowding-Effekts deutlich zu reduzieren, so dass das Modell optimiert werden konnte. Der multivariate Charakter sowie der große Umfang der Daten stellte hohe Anforderungen an eine geeignete Methodik für eine Auswertung der Daten. Auf Erfahrungen anderer Arbeiten konnte nicht zurückgegriffen werden, da bis dato keine Arbeiten von solch großem Stichprobenumfang durchgeführt wurden. Einfache statistische Analysen stellten sich als nicht geeignet heraus. Mit dem Wilcoxon-Mann-Whitney-Kennwert und dem Verfahren nach Wei und Lachin konnten jedoch schließlich zwei Instrumente für eine adäquate Datenanalytik bestimmt werden, die eine Datenanalyse im Sinne der Fragestellung des Projektes umfassend erlauben. Eine erste Auswertung der Daten des Testdurchlaufs zeigte, dass vor allem niedrigere Dosisstufen im Konzentrationsbereich bis 50 µM 2,4-DNP interessant sind. Ergänzende Datenanalysen wiesen darauf hin, dass 2,4-DNP offenbar die Stoffwechselaktivität von Zellen unmittelbar nach Zugabe um einen bestimmten Betrag erhöht und diese dann auf diesem Niveau kontinuierlich für eine bestimmte Zeit anhält, bis schließlich ein Wirkmaximum erreicht wird, das von der Höhe der Dosis abhängt. Als Ursachen für die je nach Dosisstufe unterschiedlich lange Wirkung von 2,4-DNP wurden verschiedene Ursachen diskutiert, die es weiter abzuklären gilt. Wahrscheinlich scheint jedoch eine Zytotoxizität höherer Dosierungen. Durch die ergänzende Analytik bestimmter Stoffwechselparameter gelang es, den crowding-Effekt auch für den spezifischen Glucose-Verbrauch nachzuweisen. Zudem konnte gezeigt werden, dass 2,4-DNP nicht nur durch Kurzschluss des Protonengradienten die Wärmeproduktion erhöht, sondern auch den Substratverbrauch der Zelle steigert: bei einer Konzentration von 100 µM 2,4-DNP erhöhte sich der spezifische Glucoseverbrauch um etwa 50%. Untersuchungen der Laktatproduktion ließen außerdem vermuten, dass die Stoffwechselsteigerung von 2,4-DNP eher oxidativ bedingt ist. Durch die vorliegenden Arbeit konnte erfolgreich ein geeignetes Messsystems für die mikrokalorimetrische Analyse einer Vielzahl an Zellen etabliert werden. Durch einen anschließenden Testdurchlauf mit 4 unterschiedlichen Zelllinien konnte zudem das System optimiert und eine adäquate Methodik für eine aussagekräftige Datenanalyse bestimmt werden. Es steht somit ein Modell zur Verfügung, mit dem die Wärmeproduktion einer Vielzahl an Zelllinien auf die Wirkung von 2,4-DNP, aber auch von anderen Substanzen, untersucht werden kann, was schließlich die Bestimmung von Dosis-Wirkungs-Beziehungen ermöglicht. N2 - Aim: To establish a microcalorimetry system allowing high-throughput analysis of heat production in a variety of human cell lines (benign and malignant). Method: To avoid both problems arising from the stirring technique and the “crowding effect” occurring in unstirred cell suspensions (decrease of specific heat output per cell with increasing cell density), we decided to make use of a special glass slide technique: Cells were grown on both sides of 10 x 20 mm2 glass slides which were then transferred into the medium filled 4 ml stainless steel ampoules of a 2277 Thermal Activity Monitor (TAM, Thermo Metric, Sweden). Cell numbers on the slides were determined after removal from the ampoule by a commercially available LDH cell counting assay. Results: Stable calorimetric signals were obtained with this technique. However, in spite of highly reproducible growing conditions (same cell density in the starting cultures, same incubation time, same batches of medium), the glass slides turned out to contain greatly varying cell numbers. The analysis of the heat output / cell number relationship showed that, with increasing cell number, the overall heat production rate did not increase in a proportional manner. On the contrary, measurements with different cell numbers between 0.75 and 2 x 106 per slide clearly revealed a decrease of specific heat output with increasing cell density. The magnitude of this "crowding effect" seemd to depend on the cell line studied. Discussion: The "crowding effect" is usually being explained by impaired oxygen and nutrient supply to cells in unstirred (sedimentating) suspensions. However, in contrast to the hypothesis that cell monolayers should be free from a notable "crowding effect", we found a similar self-inihibition of cellular heat output with the glass slide technique. This could either be indicative of specific diffusion problems occurring even in monolayers (unstirred layer of incubation medium around the slide, inadvertent three-dimensional growth of cells) or of self-inhibitory effects other than impaired oxygen and nutrient supply (contact inhibition). Both phenomena should differ between benign and malignant cells. KW - Mikrokaloriemetrie KW - Energiestoffwechsel KW - Tumorzellen KW - Dinitrophenol KW - microcalorimetry KW - energy metabolism KW - tumor cells KW - dinitrophenol Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-21495 ER -