TY - JOUR A1 - Wehrheim, Maren H. A1 - Faskowitz, Joshua A1 - Sporns, Olaf A1 - Fiebach, Christian J. A1 - Kaschube, Matthias A1 - Hilger, Kirsten T1 - Few temporally distributed brain connectivity states predict human cognitive abilities JF - NeuroImage N2 - Highlights • Brain connectivity states identified by cofluctuation strength. • CMEP as new method to robustly predict human traits from brain imaging data. • Network-identifying connectivity ‘events’ are not predictive of cognitive ability. • Sixteen temporally independent fMRI time frames allow for significant prediction. • Neuroimaging-based assessment of cognitive ability requires sufficient scan lengths. Abstract Human functional brain connectivity can be temporally decomposed into states of high and low cofluctuation, defined as coactivation of brain regions over time. Rare states of particularly high cofluctuation have been shown to reflect fundamentals of intrinsic functional network architecture and to be highly subject-specific. However, it is unclear whether such network-defining states also contribute to individual variations in cognitive abilities – which strongly rely on the interactions among distributed brain regions. By introducing CMEP, a new eigenvector-based prediction framework, we show that as few as 16 temporally separated time frames (< 1.5% of 10 min resting-state fMRI) can significantly predict individual differences in intelligence (N = 263, p < .001). Against previous expectations, individual's network-defining time frames of particularly high cofluctuation do not predict intelligence. Multiple functional brain networks contribute to the prediction, and all results replicate in an independent sample (N = 831). Our results suggest that although fundamentals of person-specific functional connectomes can be derived from few time frames of highest connectivity, temporally distributed information is necessary to extract information about cognitive abilities. This information is not restricted to specific connectivity states, like network-defining high-cofluctuation states, but rather reflected across the entire length of the brain connectivity time series. KW - functional connectivity KW - resting state KW - machine learning KW - predictive modeling KW - general cognitive ability Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349874 VL - 277 ER - TY - THES A1 - Ramirez Pasos, Uri Eduardo T1 - Subthalamic Nucleus Neural Synchronization and Connectivity during Limbic Processing of Emotional Pictures: Evidence from Invasive Recordings in Patients with Parkinson's Disease T1 - Synchronisierung und Konnektivität des Nucleus subthalamicus während limbischer Bearbeitung affektiver Bilder: Evidenz aus invasiven Aufzeichnungen in Patienten mit Morbus Parkinson N2 - In addition to bradykinesia and tremor, patients with Parkinson’s disease (PD) are known to exhibit non-motor symptoms such as apathy and hypomimia but also impulsivity in response to dopaminergic replacement therapy. Moreover, a plethora of studies observe differences in electrocortical and autonomic responses to both visual and acoustic affective stimuli in PD subjects compared to healthy controls. This suggests that the basal ganglia (BG), as well as the hyperdirect pathway and BG thalamocortical circuits, are involved in affective processing. Recent studies have shown valence and dopamine-dependent changes in synchronization in the subthalamic nucleus (STN) in PD patients during affective tasks. This thesis investigates the role of dopamine, valence, and laterality in STN electrophysiology by analyzing event-related potentials (ERP), synchronization, and inter-hemispheric STN connectivity. STN recordings were obtained from PD patients with chronically implanted electrodes for deep brain stimulation during a passive affective picture presentation task. The STN exhibited valence-dependent ERP latencies and lateralized ‘high beta’ (28–40 Hz) event-related desynchronization. This thesis also examines the role of dopamine, valence, and laterality on STN functional connectivity with the anterior cingulate cortex (ACC) and the amygdala. The activity of these limbic structures was reconstructed using simultaneously recorded electroencephalographic signals. While the STN was found to establish early coupling with both structures, STN-ACC coupling in the ‘alpha’ range (7–11 Hz) and uncoupling in the ‘low beta’ range (14–21 Hz) were lateralized. Lateralization was also observed at the level of synchrony in both reconstructed sources and for ACC ERP amplitude, whereas dopamine modulated ERP latency in the amygdala. These results may deepen our current understanding of the STN as a limbic node within larger emotional-motor networks in the brain.
 N2 - Neben Bradykinese und Tremor weisen Patienten mit Morbus Parkinson (PD) bekannterweise nicht-motorische Symptome auf wie Apathie und Hypomimie, aber auch Impulsivität, welche durch Dopaminersatztherapien bedingt ist. Viele Studien belegen außerdem Unterschiede von kortikalen und autonomen Reaktionen auf sowohl visuelle als auch akustische Reize bei Patienten mit PD im Vergleich zu gesunden Kontrollgruppen. Dies legt nahe, dass sich die Basalganglien (BG), und auch die hyperdirekte Verbindung sowie die BG-thalamokortikalen Schleifen, an der Affektbearbeitung beteiligen. Jüngere Studien haben Valenz- und Dopamin-bedingte Veränderungen der Synchronisierung im Nucleus subthalamicus (STN) von Parkinson-Patienten bei affektiven Aufgaben belegt. Diese Promotionsarbeit untersucht die Rolle von Dopamin, Valenz und Lateralität in der STN-Elektrophysiologie mittels Analysen von ereigniskorrelierten Potentialen (ERP), Synchronisierung und interhemisphärischer funktioneller Konnektivität. STN-Aufzeichnungen wurden von Patienten mit dauerhaft implantierten Elektroden für die Tiefenhirnstimulation während einer passiven Aufgabe abgeleitet, bei den ihnen Bilder mit emotionalen Inhalten gezeigt wurden. Der STN wies Valenz-bedingte ERP-Latenz und lateralisierte ereigniskorrelierte Desynchronisierung in ‘hohem Beta’ (28–40 Hz) auf. Diese Dissertation untersucht auch die Rolle von Dopamin, Valenz und Lateralität bezüglich der funktionellen Konnektivität zwischen dem STN und dem Gyrus cinguli pars anterior (ACC) sowie der Amygdala. Die Aktivität dieser Strukturen wurde aus simultanen elektroenzephalographischen Aufzeichnungen rekonstruiert. Obwohl eine STN-Kopplung mit beiden Strukturen auftritt, war die STN-ACC-Kopplung im ‘Alpha’- Bereich (7–11 Hz) und die Entkopplung im ‘niedrigen Beta’-Bereich (14–21 Hz) lateralisiert. Lateralisierung wurde auch an der Synchronisierung in beiden rekonstruierten Quellen und an der ACC-ERP-Amplitude festgestellt, wohingegen Dopamin die ERP-Latenz in der Amygdala modulierte. Diese Ergebnisse mögen das gegenwärtige Wissen vom STN als limbischem Knoten innerhalb größerer affektiv-motorischer Schleifen im Gehirn vertiefen. KW - Nucleus subthalamicus KW - subthalamic nucleus KW - Emotionales Verhalten KW - functional connectivity KW - oscillations KW - emotion KW - Affekt KW - Elektrophysiologie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169850 ER -