TY - THES A1 - Schäfer, Christin Marliese T1 - Approaching antimicrobial resistance – Structural and functional characterization of the fungal transcription factor Mrr1 from Candida albicans and the bacterial ß-ketoacyl-CoA thiolase FadA5 from Mycobacterium tuberculosis T1 - Auf den Spuren der antimikrobiellen Resistenz – Strukturelle und funktionelle Charakterisierung des Transkriptionsfaktors Mrr1 aus Candida albicans und der bakteriellen β-ketoacyl-CoA thiolase FadA5 aus Mykobakterium tuberculosis N2 - The number of fungal infections is rising in Germany and worldwide. These infections are mainly caused by the opportunistic fungal pathogen C. albicans, which especially harms immunocompromised people. With increasing numbers of fungal infections, more frequent and longer lasting treatments are necessary and lead to an increase of drug resistances, for example against the clinically applied therapeutic fluconazole. Drug resistance in C. albicans can be mediated by the Multidrug resistance pump 1 (Mdr1), a membrane transporter belonging to the major facilitator family. However, Mdr1-mediated fluconazole drug resistance is caused by the pump’s regulator, the transcription factor Mrr1 (Multidrug resistance regulator 1). It was shown that Mrr1 is hyperactive without stimulation or further activation in resistant strains which is due to so called gain of function mutations in the MRR1 gene. To understand the mechanism that lays behind this constitutive activity of Mrr1, the transcription factor should be structurally and functionally (in vitro) characterized which could provide a basis for successful drug development to target Mdr1-mediated drug resistance caused by Mrr1. Therefore, the entire 1108 amino acid protein was successfully expressed in Escherichia coli. However, further purification was compromised as the protein tended to form aggregates, unsuitable for crystallization trials or further characterization experiments. Expression trials in the eukaryote Pichia pastoris neither yielded full length nor truncated Mrr1 protein. In order to overcome the aggregation problem, a shortened variant, missing the N-terminal 249 amino acids named Mrr1 ‘250’, was successfully expressed in E. coli and could be purified without aggregation. Similar to the wild type Mrr1 ‘250’, selected gain of function variants were successfully cloned, expressed and purified with varying yields and with varying purity. The Mrr1 `250’ construct contains most of the described regulatory domains of Mrr1. It was used for crystallization and an initial comparative analysis between the wild type protein and the variants. The proposed dimeric form of the transcription factor, necessary for DNA binding, could be verified for both, the wild type and the mutant proteins. Secondary structure analysis by circular dichroism measurements revealed no significant differences in the overall fold of the wild type and variant proteins. In vitro, the gain of function variants seem to be less stable compared to the wild type protein, as they were more prone to degradation. Whether this observation holds true for the full length protein’s stability in vitro and in vivo remains to be determined. The crystallization experiments, performed with the Mrr1 ‘250’ constructs, led to few small needle shaped or cubic crystals, which did not diffract very well and were hardly reproducible. Therefore no structural information of the transcription factor could be gained so far. Infections with M. tuberculosis, the causative agent of tuberculosis, are the leading cause of mortality among bacterial diseases. Especially long treatment times, an increasing number of resistant strains and the prevalence of for decades persisting bacteria create the necessity for new drugs against this disease. The cholesterol import and metabolism pathways were discovered as promising new targets and interestingly they seem to play an important role for the chronic stage of the tuberculosis infection and for persisting bacteria. In this thesis, the 3-ketoacyl-CoA thiolase FadA5 from M. tuberculosis was characterized and the potential for specifically targeting this enzyme was investigated. FadA5 catalyzes the last step of the β-oxidation reaction in the side-chain degradation pathway of cholesterol. We solved the three dimensional structure of this enzyme by X-ray crystallography and obtained two different apo structures and three structures in complex with acetyl-CoA, CoA and a hydrolyzed steroid-CoA, which is the natural product of FadA5. Analysis of the FadA5 apo structures revealed a typical thiolase fold as it is common for biosynthetic and degradative enzymes of this class for one of the structures. The second apo structure showed deviations from the typical thiolase fold. All obtained structures show the enzyme as a dimer, which is consistent with the observed dimer formation in solution. Thus the dimer is likely to be the catalytically active form of the enzyme. Besides the characteristic structural fold, the catalytic triad, comprising two cysteines and one histidine, as well as the typical coenzyme A binding site of enzymes belonging to the thiolase class could be identified. The two obtained apo structures differed significantly from each other. One apo structure is in agreement with the characteristic thiolase fold and the well-known dimer interface could be identified in our structure. The same characteristics were observed in all complex structures. In contrast, the second apo structure followed the thiolase fold only partially. One subdomain, spanning 30 amino acids, was in a different orientation. This reorientation was caused by the formation of two disulfide bonds, including the active site cysteines, which rendered the enzyme inactive. The disulfide bonds together with the resulting domain swap still permitted dimer formation, yet with a significantly shifted dimer interface. The comparison of the apo structures together with the preliminary activity analysis performed by our collaborator suggest, that FadA5 can be inactivated by oxidation and reactivated by reduction. If this redox switch is of biological importance requires further evaluation, however, this would be the first reported example of a bacterial thiolase employing redox regulation. Our obtained complex structures represent different stages of the thiolase reaction cycle. In some complex structures, FadA5 was found to be acetylated at the catalytic cysteine and it was in complex with acetyl-CoA or CoA. These structures, together with the FadA5 structure in complex with a hydrolyzed steroid-CoA, revealed important insights into enzyme dynamics upon ligand binding and release. The steroid-bound structure is as yet a unique example of a thiolase enzyme interacting with a complex ligand. The characterized enzyme was used as platform for modeling studies and for comparison with human thiolases. These studies permitted initial conclusions regarding the specific targetability of FadA5 as a drug target against M. tuberculosis infection, taking the closely related human enzymes into account. Additional analyses led to the proposal of a specific lead compound based on the steroid and ligand interactions within the active site of FadA5. N2 - Die Zahl der Pilzinfektionen, welche hauptsächlich durch den opportunistisch-pathogenen Pilz C. albicans verursacht werden, ist nicht nur in Deutschland, sondern weltweit steigend. Die auftretenden Infektionen betreffen vor allem immunsupprimierte Personen. Dieser Anstieg an Pilzinfektionen verursacht häufigere und immer länger andauernde Behandlungen und resultiert auch im vermehrten Auftreten von Resistenzen gegen Antimykotika, unter anderem gegen das klinisch eingesetzte Fluconazol. Eine Möglichkeit der Resistenzbildung in C. albicans ist die Expression der ‚Multidrug resistance pump 1‘ (Mdr1), einer Membranpumpe, die zur Major-Facilitator-Superfamilie zählt. Diese durch Mdr1-vermittelte Fluconazolresistenz wird durch den Mdr1 regulierenden Transkriptionsfaktor Mrr1 (‚Multidrug resistance regulator 1‘) gesteuert. In resistenten C. albicans Stämmen befindet sich Mrr1 ohne weitere Stimulation oder externe Aktivierung bereits in einem hyperaktiven Zustand, der durch Mutationen mit Funktionsgewinn im MRR1 Gen verursacht wird. Um die Mechanismen, die sich hinter der konstitutiven Aktivität von Mrr1 verbergen, zu entschlüsseln, sollte dieser Transkriptionsfaktor in vitro strukturell und funktionell charakterisiert werden. Diese Charakterisierung könnte im Anschluss genutzt werden, um Wirkstoffe gegen die von Mrr1 gesteuerte und von Mdr1-vermittelte Resistenz zu entwickeln. Zu diesem Zweck, wurde das gesamte, 1108 Aminosäuren umfassende, Protein in Escherichia coli exprimiert. Die anschließende Proteinreinigung war allerdings durch Aggregatbildung beeinträchtigt, welche Kristallisationsansätze oder eine weitere Charakterisierung dieses Proteinkonstruktes verhinderten. Im Eukaryot Pichia pastoris durchgeführte Expressionsanalysen, waren leider erfolglos und weder die Expression des Volllängen-Mrr1 noch seiner verkürzten Proteinvarianten konnte nachgewiesen werden. Um Proteinaggregation zu umgehen, wurde deshalb ein N-terminal, um 249 Aminosäuren, verkürztes Proteinkonstrukt, Mrr1 ‚250‘, in E. coli exprimiert und erfolgreich, ohne Aggregation, gereinigt. Zusätzlich zum wildtypischen Mrr1 ‚250‘ Protein wurden auch ausgewählte Varianten kloniert, exprimiert und gereinigt, allerdings mit unterschiedlicher Ausbeute und Reinheit. Da das verkürzte Mrr1 ‚250‘ Protein noch immer fast alle in der Literatur beschriebenen Regulierungsdomänen besitzt, wurde es zur Kristallisation und für einen initialen Vergleich zwischen Wildtyp und Varianten genutzt. So konnte zum Beispiel die vermutete Dimerisierung des Transkriptionsfaktors sowohl für das Wildtypprotein als auch für die Varianten gezeigt werden. Eine weiterführende Untersuchung der Sekundärstruktur mittels zirkular Dichroismus Messungen zeigte keine signifikanten Unterschiede zwischen den Mutanten und dem Wildtypprotein. Allerdings erscheinen die Funktionsgewinn Varianten von Mrr1 in vitro instabiler als das Wildtypprotein, was sich durch stärkeren Abbau der Variantenproteine zeigt. Ob diese Beobachtungen allerdings vom verkürzten Protein auf das Gesamtprotein und dessen in vitro und in vivo Stabilität übertragbar sind, ist derzeit noch unklar. Kristallisationsansätze, die mit den verschiedenen Varianten des Mrr1 ‚250‘ Konstrukts durchgeführt wurden, führten zu sehr wenigen, nadelförmigen oder kubischen Kristallen, die kaum reproduzierbar waren und schlecht diffraktierten. Bisher konnten deshalb keine strukturellen Daten für den untersuchten Transkriptionsfaktor erhalten werden. Noch immer sind Infektionen, die durch M. tuberculosis, dem Erreger der Tuberkulose, verursacht werden die Haupttodesursache im Bereich der bakteriellen Infektionen. In diesem Zusammenhang stellen vor allem lange Behandlungszeiten, das vermehrte Auftreten resistenter Stämme und das Vorkommen persistierender Bakterien, die Jahrzehnte in ihrem Wirt überdauern können, nach wie vor große Herausforderungen dar und die Entwicklung neuer Tuberkulosemedikamente ist dringend erforderlich. Sowohl der Cholesterinimport als auch dessen Stoffwechselweg wurden als vielversprechende Wirkstoffziele identifiziert. Nicht zuletzt, da beide Mechanismen eine wichtige Rolle während der chronischen Phase der Tuberkuloseinfektion und für persistierende Bakterien zu spielen scheinen. Im Laufe dieser Arbeit wurde die 3-ketoacyl-CoA Thiolase FadA5 aus M. tuberculosis strukturell charakterisiert und auf ihre Tauglichkeit als spezifisches Wirkstoffziel hin untersucht. FadA5 katalysiert den letzten Schritt der β-Oxidation im Zuge des Seitenkettenabbaus von Cholesterin. Wir konnten die Proteinstruktur des FadA5 Proteins mittels Röntgenkristallographie ermitteln und erhielten zwei unterschiedliche apo-Strukturen sowie drei Komplexstrukturen. In den Komplexstrukturen waren entweder Acetyl-CoA, CoA oder ein hydrolisiertes Steroid-CoA, welches das natürliche Produkt von FadA5 darstellt, an das Enzym gebunden. Die Strukturanalyse der apo-Strukturen lies für eine der beiden Modelle die typische Thiolasefaltung erkennen, welche für biosynthetische und degradative Enzyme dieser Klasse üblich ist. In der zweiten apo-Struktur konnte diese Faltung nur teilweise identifiziert werden. Das Protein liegt in allen erhaltenen Strukturen als Dimer vor, was auch in Lösung beobachtet werden konnte und darauf hinweist, dass das Dimer die katalytisch aktive Form des Proteins darstellt. Neben der charakteristischen Faltung, wurde das aktive Zentrum, bestehend aus zwei Cysteinen und einem Histidin, sowie die für Thiolasen übliche Coenzym A Bindetasche identifiziert. Die erhaltenen apo-Strukturen unterschieden sich deutlich voneinander. Die zuvor beschriebene typische Dimer-Interaktionsfläche wird auch in den Komplexstrukturen beobachtet. Dahingegen war die Thiolasefaltung in der zweiten Apo-Struktur nur teilweise vorhanden, da beispielsweise eine Domäne, die 30 Aminosäuren umfasst, umorientiert vorlag. Die Bildung zweier Disulfidbrücken, welche beide katalytischen Cysteine involviert, verursachte die beschriebene Umorientierung und damit gepaart eine wahrscheinliche Inaktivität des Enzyms. Trotz der beschriebenen Umorientierung und Disulfidbrückenbildung liegt das Protein noch immer als Dimer vor, allerdings mit einer deutlich verschobenen Interaktionsfläche. Der Vergleich der beiden apo-Strukturen in Kombination mit einer vorläufigen Aktivitätsanalyse, die von unseren Kollaborationspartnern durchgeführt wurde, lassen vermuten, dass FadA5 durch Oxidation inaktiviert und durch Reduktion reaktiviert werden kann. Ob diese Redoxregulierung biologisch relevant ist, muss noch geklärt werden, allerdings wäre dies der erste beschriebene Fall einer redoxregulierten bakteriellen Thiolase. Die Komplexstrukturen stellen verschiedene Stufen der Thiolasereaktion dar. In einigen dieser Strukturen lag FadA5 am katalytischen Cystein acetyliert vor und befand sich im Komplex mit acetyl-CoA oder CoA. Durch eine weitere Struktur, in der FadA5 im Komplex mit einem hydrolisierten Steroid-CoA vorlag, konnten wichtige Einblicke in die Enzymdynamik während der Ligandenbindung und Freisetzung gewonnen werden. Die Steroid gebundene Struktur stellt derzeit ein einzigartiges Beispiel einer Thiolase im Komplex mit einem großen, mehrere Ringsysteme umfassenden Liganden dar. Das charakterisierte Enzym diente als Ausgangspunkt für Modellierungsversuche und Vergleiche mit humanen Thiolasen. Diese Analysen erlaubten initiale Schlussfolgerungen bezüglich einer Verwendung von FadA5 als spezifisches Wirkstoffziel gegen Tuberkuloseinfektionen, im Kontext verwandter humaner Enzyme. Zusätzliche Untersuchungen ermöglichten die Ausarbeitung einer spezifischen Leitsubstanz, die auf den analysierten Interaktionen zwischen dem aktiven Zentrum von FadA5 und den gebundenen Liganden basiert. KW - Multidrug-Resistenz KW - Candida albicans KW - Tuberkulose KW - Röntgenkristallographie KW - Cholesterinstoffwechsel KW - Structural Biology KW - Transcription factor KW - Thiolase Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108400 ER - TY - THES A1 - Gotthardt [geb. Schubert], Sonja T1 - Einfluss von Oncostatin M auf die Pathogenese der Nicht-alkoholischen Fettlebererkrankung T1 - Influence of Oncostatin M on the pathogenesis of non-alcoholic fatty liver disease N2 - Die Nicht-alkoholische Fettlebererkrankung (NAFLD) ist eine der häufigsten chronischen Lebererkrankungen der westlichen Welt. Die Pathogenese der Erkrankung ist noch nicht vollständig erforscht und wirksame medikamentöse Therapien sind bisher nicht zugelassen. Wachsende Evidenz zeigt, dass das Interleukin-6-Typ-Zytokin Oncostatin M (OSM) eine wichtige Rolle in der Pathogenese der NAFLD spielt. Die japanische Arbeitsgruppe um Komori et al. zeigte an OSM-Rezeptor-β-defizienten (Osmr-KO-) Mäusen sowie durch OSM-Behandlung von genetisch und ernährungsbedingt adipösen Mäusen, dass OSM vor einer hepatischen Steatose und metabolischer Komorbidität schützen kann. Andere Publikationen suggerieren, dass OSM an NAFLD-Entwicklung und -Progression beteiligt ist, indem es die Expression von Genen der β-Oxidation und Very-Low-Density-Lipoprotein (VLDL-) Sekretion reprimiert und die Expression profibrogenetischer Gene fördert. Low-Density-Lipoprotein-Rezeptor-defiziente- (Ldlr-KO-) Mäuse sind seit Langem als Atherosklerose-Modell etabliert und wurden zuletzt auch als physiologisches Modell für NAFLD identifiziert. Um die Rolle von OSM in der NAFLD-Pathogenese zu beleuchten, wurden Osmr-KO-Mäuse auf Wildtyp- (WT-) und Ldlr-KO-Hintergrund untersucht, die über 12 Wochen eine fett- und cholesterinreiche Western Diet erhielten und anschließend für die Organentnahme geopfert wurden. Im Vorfeld dieser Arbeit wurden Körpergewicht, Blutglukose, Serum-Cholesterin und Lebergewicht der Tiere gemessen. Hierbei zeigte sich ein erhöhtes Körpergewicht, unveränderte Blutglukose, erhöhtes Serum-Cholesterin sowie ein erhöhtes Lebergewicht in Osmr-KO- gegenüber WT-Mäusen. Andersherum waren Körpergewicht, Blutglukose, Serum-Cholesterin und Lebergewicht in Ldlr-Osmr-KO- gegenüber Ldlr-KO-Mäusen vermindert. Im Rahmen der vorliegenden Arbeit erfolgte die histologische Untersuchung des Lebergewebes, die Messung von Serum-Triglyzeriden und Fettsäuren sowie die Untersuchung der hepatischen Genexpression. An kultivierten Zellen der humanen Hepatom-Zelllinie HepG2 wurde eine mögliche Regulation der CYP7A1-Genexpression durch OSM untersucht. CYP7A1 ist als Schrittmacherenzym der Gallensäuresynthese an der hepatischen Cholesterin-Clearance beteiligt. Osmr-KO-Mäuse zeigten gegenüber WT-Mäusen histologisch eine verstärkte hepatische Steatose. Bei der Untersuchung der mRNA-Expression von Genen mit Beteiligung an der hepatischen Lipidhomöostase zeigte sich eine Minderexpression von Ldlr in Osmr-KO-Mäusen. Weiterhin zeigte sich eine etwas geringere Expression von Cyp7a1 in Osmr-KO-Mäusen. Die Expression aller anderen untersuchten Gene, die an Fettsäuresynthese, Cholesterintransport und –metabolismus beteiligt sind, lieferten keine Erklärung für eine erhöhte hepatische Lipidakkumulation in Osmr-KO-Mäusen. Ldlr-Osmr-KO-Mäuse hatten gegenüber Ldlr-KO-Mäusen eine geringer ausgeprägte hepatische Steatose. Die mRNA-Expression von Genen der Fettsäuresynthese, der Cholesterinbiosynthese und des Cholesterintransports waren in Ldlr-Osmr-KO- gegenüber Ldlr-KO-Mäusen nicht wesentlich verändert. Allerdings fiel eine deutliche Hochregulation von Cyp7a1 in Ldlr-Osmr-KO-Mäusen auf. Darüber hinaus war Osm in Ldlr-KO-Mäusen gegenüber WT-Mäusen stärker exprimiert. Um eine Regulation von CYP7A1 durch OSM nachzuweisen, wurde die Genexpression in HepG2-Zellen nach Stimulation mit OSM untersucht. Hierbei zeigte sich, dass OSM die mRNA-Expression von CYP7A1 supprimierte. Dieser Effekt war durch die Zugabe von Inhibitoren der Januskinasen (JAK), Mitogen Activated Protein Kinase/ERK-Kinase (MEK) und Extracellular-signal Regulated Kinase ½ (ERK1/2) reversibel. Die CYP7A1-Suppression durch OSM ging mit einer verminderten Expression des Transkriptionsfaktor-Gens HNF4A einher. Osmr-KO-Mäuse zeigten gegenüber WT-Mäusen nach 12 Wochen Western Diet verstärkte Adipositas, Dyslipidämie sowie eine hepatische Steatose. Die Analyse der hepatischen mRNA-Expression legt nahe, dass die Minderexpression von Ldlr in Osmr-KO-Mäusen im Vergleich zu WT-Mäusen zur Verstärkung der Dyslipidämie und hepatischen Steatose beigetragen hat. Weiterhin kann die geringere Expression von Cyp7a1 in Osmr-KO-Mäusen durch daraus resultierende Akkumulation von Cholesterin zur erhöhten hepatischen Lipidakkumulation in diesen Mäusen beigetragen haben. Ldlr-KO-Mäuse zeigten nach 12 Wochen Western Diet ebenfalls eine hepatische Steatose. Diese war in Ldlr-Osmr-KO-Mäusen gegenüber Ldlr-KO-Mäusen geringer ausgeprägt. Die erhöhte Expression von Cyp7a1 in Ldlr-Osmr-KO-Mäusen kann die Verbesserung von hepatischer Lipidakkumulation und Dyslipidämie durch erhöhte Cholesterinmetabolisierung zu Gallensäuren erklären. Übereinstimmend mit der Cyp7a1-Regulation in LDLR-defizienten Mäusen zeigte sich in vitro, dass OSM die Expression von CYP7A1 in HepG2-Zellen vermindert und sich so negativ auf die hepatische Lipidhomöostase auswirken kann. Insgesamt implizieren diese Ergebnisse eine divergierende Rolle von OSM bei der Entwicklung einer hepatischen Steatose abhängig vom genetischen Hintergrund. OSM scheint bei WT-Mäusen für die Erhaltung der metabolischen Gesundheit wichtig zu sein. Bei Ldlr-KO-Mäusen hingegen scheint OSM die Entwicklung von Adipositas, Dyslipidämie und hepatischer Steatose zu fördern. Die differenzielle Rolle in WT- und Ldlr-KO-Mäusen könnte durch unterschiedliche Osm-Expressionsspiegel zustande kommen: Während basale OSMRβ-Signaltransduktion durch geringe OSM-Spiegel in WT-Mäusen für die Lipidhomöostase essenziell zu sein scheint, könnte erhöhte oder prolongierte OSMRβ-Signaltransduktion durch höhere OSM-Spiegel in Ldlr-KO-Mäusen das Fortschreiten der hepatischen Steatose fördern. Dies stellt OSM als mögliches NAFLD-Therapeutikum in Frage. Um die Hypothese zu überprüfen, dass OSM abhängig von der Höhe und Kinetik der Spiegel günstige oder ungünstige Effekte auf die NAFLD-Entwicklung hat, sollte in zukünftigen Experimenten der Einfluss kurz- und langfristiger Behandlung von WT-Mäusen mit OSM unterschiedlicher Konzentrationen auf die Entwicklung einer hepatischen Steatose untersucht werden. N2 - Non-alcoholic fatty liver disease (NAFLD) is among the most common chronic liver diseases in Western societies. Pathogenetic mechanisms are not fully elucidated and to date there is no approved drug therapy available. There is mounting evidence that the Interleukin-6-type-cytokine Oncostatin M (OSM) plays a crucial role in the pathogenesis of NAFLD. The Japanese working group of Komori et al. had shown that OSM has favorable effects on metabolism und protects against hepatic steatosis using OSM-receptor-β-deficient (Osmr-KO-) mice as well as OSM treatment of genetically or diet-induced obese mice. Other publications suggest that OSM contributes to the pathogenesis and progression of NAFLD by reducing the expression of genes involved in β-oxidation and Very-Low-Density-Lipoprotein (VLDL) secretion and inducing the expression of genes involved in fibrogenesis. Recently Low-Density-Lipoprotein-Receptor-deficient (Ldlr-KO-) mice, which are a well-established model for atherosclerosis, have also been considered a physiological model for NAFLD. To further investigate the role of OSM in NAFLD pathogenesis Osmr-KO mice on either wild type- (WT-) or Ldlr-KO-background were fed a high-fat and high-cholesterol Western diet for 12 weeks and were then sacrificed for tissue collection. Prior to the present thesis body weight, blood glucose levels, serum cholesterol and liver weight of the mice were measured. Osmr-KO mice showed increased body weight, serum cholesterol levels and liver weight compared to WT mice, whereas blood glucose levels did not differ. On the contrary, Ldlr-Osmr-KO mice showed decreased values in all parameters compared to Ldlr-KO mice, including body weight, blood glucose levels, serum cholesterol levels and liver weight. In the present thesis a histological examination of the liver tissue was made, serum levels of triglycerides and fatty acids were measured, and hepatic gene expression was analyzed. In cultured cells of the human hepatoma cell line HepG2 a potential regulation of CYP7A1 gene expression by OSM was examined. CYP7A1 is the rate limiting enzyme of bile acid synthesis and is therefore involved in hepatic cholesterol clearance. Osmr-KO mice showed enhanced hepatic steatosis compared to WT mice. Examination of gene expression involved in hepatic lipid homeostasis revealed reduced Ldlr expression levels in Osmr-KO mice. Furthermore, a slightly decreased Cyp7a1 expression was observed. The expression of other genes involved in fatty acid synthesis, cholesterol transport and cholesterol metabolism did not explain the enhanced hepatic lipid accumulation in Osmr-KO mice. In Ldlr-Osmr-KO mice hepatic steatosis was reduced compared to Ldlr-KO mice. The expression of genes involved in fatty acid synthesis, cholesterol synthesis and cholesterol transport was not considerably altered in Ldlr-Osmr-KO compared to Ldlr-KO mice. However, Cyp7a1 was markedly upregulated in Ldlr-Osmr-KO mice. In addition, Osm expression was increased in Ldlr-KO mice compared to WT mice. To prove the regulation of CYP7A1 by OSM, gene expression was determined in OSM-treated HepG2 cells. The results show that OSM attenuated CYP7A1 expression. This effect was reversed by the addition of inhibitors of either januskinases (JAK), mitogen-activated protein kinase/ERK-kinase (MEK) or extracellular-signal regulated kinase 1/2 (ERK1/2). CYP7A1-suppression by OSM was accompanied by reduced expression levels of the transcription factor gene HNF4A. After 12 weeks of Western diet Osmr-KO mice showed enhanced obesity, dyslipidemia and hepatic steatosis compared to WT mice. Determination of hepatic gene expression suggests that decreased expression of Ldlr in Osmr-KO mice compared to WT mice contributes to dyslipidemia and hepatic steatosis. Furthermore, the decreased expression of Cyp7a1 in Osmr-KO mice may contribute to cholesterol accumulation and accordingly to hepatic lipid accumulation in these mice. Ldlr-KO mice also showed hepatic steatosis after 12 weeks of Western diet. In comparison, hepatic steatosis was markedly reduced in Ldlr-Osmr-KO mice. Increased expression levels of Cyp7a1 and hence enhanced metabolization of cholesterol to bile acids in Ldlr-Osmr-KO mice can explain improved hepatic lipid accumulation and dyslipidemia in these mice compared to Ldlr-KO mice. Consistent with the discovered Cyp7a1 regulation in LDLR-deficient mice, OSM decreased the expression of CYP7A1 in HepG2 cells and therefore may have detrimental effects on hepatic lipid homeostasis. Altogether the results implicate a diverging role of OSM in the pathogenesis of hepatic steatosis depending on the genetic background. In WT mice OSM seems to convey protective effects on lipid homeostasis, whereas in Ldlr-KO mice OSM seems to promote the development of obesity, dyslipidemia and hepatic steatosis. The differential role of OSM in WT and Ldlr-KO mice might be caused by diverging Osm expression levels: Basal OSMRβ signal transduction caused by low OSM levels seems to be essential for lipid homeostasis, whereas enhanced or prolonged OSMRβ signal transduction caused by higher OSM levels might foster the progression of hepatic steatosis. These findings question OSM as a putative therapeutic agent for NAFLD. To test the hypothesis that OSM has beneficial or detrimental effects on NAFLD pathogenesis depending on OSM levels and kinetics, future studies should examine the effect of short- and long-term administration of OSM in different concentrations on the development of hepatic steatosis in WT mice. KW - Fettleber KW - Interleukin 6 KW - Leukaemia-inhibitory factor KW - Cholesterinstoffwechsel KW - Fettsäurestoffwechsel KW - NAFLD KW - Oncostatin M KW - Osmr-Knockout KW - Ldlr-Knockout KW - CYP7A1 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281312 ER -