TY - JOUR A1 - Correia Santos, Sara A1 - Bischler, Thorsten A1 - Westermann, Alexander J. A1 - Vogel, Jörg T1 - MAPS integrates regulation of actin-targeting effector SteC into the virulence control network of Salmonella small RNA PinT JF - Cell Reports N2 - A full understanding of the contribution of small RNAs (sRNAs) to bacterial virulence demands knowledge of their target suites under infection-relevant conditions. Here, we take an integrative approach to capturing targets of the Hfq-associated sRNA PinT, a known post-transcriptional timer of the two major virulence programs of Salmonella enterica. Using MS2 affinity purification and RNA sequencing (MAPS), we identify PinT ligands in bacteria under in vitro conditions mimicking specific stages of the infection cycle and in bacteria growing inside macrophages. This reveals PinT-mediated translational inhibition of the secreted effector kinase SteC, which had gone unnoticed in previous target searches. Using genetic, biochemical, and microscopic assays, we provide evidence for PinT-mediated repression of steC mRNA, eventually delaying actin rearrangements in infected host cells. Our findings support the role of PinT as a central post-transcriptional regulator in Salmonella virulence and illustrate the need for complementary methods to reveal the full target suites of sRNAs. KW - gene expression KW - nondocing RNA KW - chaperone HFQ KW - soluble-RNA KW - SEQ KW - interactome KW - repression KW - secretion KW - infection KW - biology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259134 VL - 34 IS - 5 ER - TY - JOUR A1 - Czimmerer, Zsolt A1 - Daniel, Bence A1 - Horvath, Attila A1 - Rückerl, Dominik A1 - Nagy, Gergely A1 - Kiss, Mate A1 - Peloquin, Matthew A1 - Budai, Marietta M. A1 - Cuaranta-Monroy, Ixchelt A1 - Simandi, Zoltan A1 - Steiner, Laszlo A1 - Nagy Jr., Bela A1 - Poliska, Szilard A1 - Banko, Csaba A1 - Bacso, Zsolt A1 - Schulman, Ira G. A1 - Sauer, Sascha A1 - Deleuze, Jean-Francois A1 - Allen, Judith E. A1 - Benko, Szilvia A1 - Nagy, Laszlo T1 - The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages JF - Immunity N2 - The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1β production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli. KW - IL-4 KW - STAT6 KW - alternative macrophage polarization KW - transcription KW - repression KW - inflammation KW - inflammasome activation KW - pyroptosis KW - IL-1β KW - macrophage epigenomics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223380 VL - 48 ER -