TY - JOUR A1 - Notz, Quirin A1 - Herrmann, Johannes A1 - Schlesinger, Tobias A1 - Helmer, Philipp A1 - Sudowe, Stephan A1 - Sun, Qian A1 - Hackler, Julian A1 - Roeder, Daniel A1 - Lotz, Christopher A1 - Meybohm, Patrick A1 - Kranke, Peter A1 - Schomburg, Lutz A1 - Stoppe, Christian T1 - Clinical Significance of Micronutrient Supplementation in Critically Ill COVID-19 Patients with Severe ARDS JF - Nutrients N2 - The interplay between inflammation and oxidative stress is a vicious circle, potentially resulting in organ damage. Essential micronutrients such as selenium (Se) and zinc (Zn) support anti-oxidative defense systems and are commonly depleted in severe disease. This single-center retrospective study investigated micronutrient levels under Se and Zn supplementation in critically ill patients with COVID-19 induced acute respiratory distress syndrome (ARDS) and explored potential relationships with immunological and clinical parameters. According to intensive care unit (ICU) standard operating procedures, patients received 1.0 mg of intravenous Se daily on top of artificial nutrition, which contained various amounts of Se and Zn. Micronutrients, inflammatory cytokines, lymphocyte subsets and clinical data were extracted from the patient data management system on admission and after 10 to 14 days of treatment. Forty-six patients were screened for eligibility and 22 patients were included in the study. Twenty-one patients (95%) suffered from severe ARDS and 14 patients (64%) survived to ICU discharge. On admission, the majority of patients had low Se status biomarkers and Zn levels, along with elevated inflammatory parameters. Se supplementation significantly elevated Se (p = 0.027) and selenoprotein P levels (SELENOP; p = 0.016) to normal range. Accordingly, glutathione peroxidase 3 (GPx3) activity increased over time (p = 0.021). Se biomarkers, most notably SELENOP, were inversely correlated with CRP (r\(_s\) = −0.495), PCT (r\(_s\) = −0.413), IL-6 (r\(_s\) = −0.429), IL-1β (r\(_s\) = −0.440) and IL-10 (r\(_s\) = −0.461). Positive associations were found for CD8\(^+\) T cells (r(_s\) = 0.636), NK cells (r\(_s\) = 0.772), total IgG (r\(_s\) = 0.493) and PaO\(_2\)/FiO\(_2\) ratios (r\(_s\) = 0.504). In addition, survivors tended to have higher Se levels after 10 to 14 days compared to non-survivors (p = 0.075). Sufficient Se and Zn levels may potentially be of clinical significance for an adequate immune response in critically ill patients with severe COVID-19 ARDS. KW - acute respiratory distress syndrome KW - selen KW - zinc KW - critical care KW - oxidative stress KW - nutrient supplementation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241112 SN - 2072-6643 VL - 13 IS - 6 ER - TY - THES A1 - Sadek, Alexander T1 - Elektrochemisch gestützte Abscheidung kupfer- und zinkdotierter Magnesiumphosphatschichten auf Titan T1 - Electrochemically Assisted Deposition of Copper and Zinc Modified Magnesium Phosphate on Titanium Surfaces N2 - Zur Entwicklung von Implantaten, welche eine komplikationsärmere Einheilung aufweisen, wurde eine dünne, homogene Beschichtung von Titanprobenkörpern mit Struvit mithilfe elektrochemischer Abscheidung generiert. Hierbei wurden dem Basiselektrolyt in den Versuchsreihen unterschiedliche Konzentrationen an Kupfer-(II)-nitrat-3-hydrat- und/oder Zinknitrat-6-hydratlösung hinzugefügt. Die experimentelle Freisetzung erfolgte in drei unterschiedlichen physiologischen Nährmedien: simulated body fluid (SBF), fetal calf serum (FCS) und Dulbecco’s Modified Eagle Medium (DMEM). Es konnte gezeigt werden, dass eine antibakteriell wirkende Menge an Kupfer- und Zinkionen freigesetzt wurde. Zusammenfassend stellt die elektrochemische Abscheidung von mit Kupfer- und Zink-dotierten Struvit auf Titanoberflächen einen vielversprechenden Ansatz in der Implantologie hinsichtlich der Einheilzeit im Knochen sowie der Risikominimierung des Verlustes dar. N2 - To develop implants with improved bone ingrowth, titanium samples were coated with homogeneous and dense struvite (MgNH4PO4·6H2O) layers by means of electrochemically assisted deposition. Copper(II) nitrate trihydrate and/or zinc nitrate hexahydrate were added to the coating electrolyte in various concentrations in order to fabricate CuZn-doped struvite coatings. Release experiments were carried out with three different quasi-physiological media, namely simulated body fluid (SBF), fetal calf serum (FCS), and Dulbecco’s Modified Eagle Medium (DMEM). It could be shown that an antibacterial amount of copper and zinc ions was released. In summary, the electrochemically deposited CuZn-doped struvite coatings are a promising approach to improve bone implant ingrowth. KW - Struvit KW - Zahnimplantat KW - elektrochemische Oberflächenbeschichtung KW - electrochemically surface coating KW - Kupfer KW - copper KW - Zink KW - zinc KW - Titanimplantat KW - titanium implant Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-209166 ER - TY - JOUR A1 - Elgheznawy, Amro A1 - Öftering, Patricia A1 - Englert, Maximilian A1 - Mott, Kristina A1 - Kaiser, Friederike A1 - Kusch, Charly A1 - Gbureck, Uwe A1 - Bösl, Michael R. A1 - Schulze, Harald A1 - Nieswandt, Bernhard A1 - Vögtle, Timo A1 - Hermanns, Heike M. T1 - Loss of zinc transporters ZIP1 and ZIP3 augments platelet reactivity in response to thrombin and accelerates thrombus formation in vivo JF - Frontiers in Immunology N2 - Zinc (Zn2+) is considered as important mediator of immune cell function, thrombosis and haemostasis. However, our understanding of the transport mechanisms that regulate Zn2+ homeostasis in platelets is limited. Zn2+ transporters, ZIPs and ZnTs, are widely expressed in eukaryotic cells. Using mice globally lacking ZIP1 and ZIP3 (ZIP1/3 DKO), our aim was to explore the potential role of these Zn2+ transporters in maintaining platelet Zn2+ homeostasis and in the regulation of platelet function. While ICP-MS measurements indicated unaltered overall Zn2+ concentrations in platelets of ZIP1/3 DKO mice, we observed a significantly increased content of FluoZin3-stainable free Zn2+, which, however, appears to be released less efficiently upon thrombin-stimulated platelet activation. On the functional level, ZIP1/3 DKO platelets exhibited a hyperactive response towards threshold concentrations of G protein-coupled receptor (GPCR) agonists, while immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptor agonist signalling was unaffected. This resulted in enhanced platelet aggregation towards thrombin, bigger thrombus volume under flow ex vivo and faster in vivo thrombus formation in ZIP1/3 DKO mice. Molecularly, augmented GPCR responses were accompanied by enhanced Ca2+ and PKC, CamKII and ERK1/2 signalling. The current study thereby identifies ZIP1 and ZIP3 as important regulators for the maintenance of platelet Zn2+ homeostasis and function. KW - platelets KW - zinc KW - ZIP KW - thrombin KW - signaling KW - thrombosis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-320154 VL - 14 ER - TY - JOUR A1 - Dresen, Ellen A1 - Pimiento, Jose M. A1 - Patel, Jayshil J. A1 - Heyland, Daren K. A1 - Rice, Todd W. A1 - Stoppe, Christian T1 - Overview of oxidative stress and the role of micronutrients in critical illness JF - Journal of Parenteral and Enteral Nutrition N2 - Inflammation and oxidative stress represent physiological response mechanisms to different types of stimuli and injury during critical illness. Its proper regulation is fundamental to cellular and organismal survival and are paramount to outcomes and recovery from critical illness. A proper maintenance of the delicate balance between inflammation, oxidative stress, and immune response is crucial for resolution from critical illness with important implications for patient outcome. The extent of inflammation and oxidative stress under normal conditions is limited by the antioxidant defense system of the human body, whereas the antioxidant capacity is commonly significantly compromised, and serum levels of micronutrients and vitamins significantly depleted in patients who are critically ill. Hence, the provision of antioxidants and anti-inflammatory nutrients may help to reduce the extent of oxidative stress and therefore improve clinical outcomes in patients who are critically ill. As existing evidence of the beneficial effects of antioxidant supplementation in patients who are critically ill is still unclear, actual findings about the most promising anti-inflammatory and antioxidative candidates selenium, vitamin C, zinc, and vitamin D will be discussed in this narrative review. The existing evidence provided so far demonstrates that several factors need to be considered to determine the efficacy of an antioxidant supplementation strategy in patients who are critically ill and indicates the need for adequately designed multicenter prospective randomized control trials to evaluate the clinical significance of different types and doses of micronutrients and vitamins in selected groups of patients with different types of critical illness. KW - critical illness KW - vitamins KW - vitamin C KW - inflammation KW - medical nutrition therapy KW - oxidative stress KW - selenium KW - trace elements KW - micronutrients KW - vitamin D KW - zinc Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318186 VL - 47 SP - S38 EP - S49 ER -