TY - INPR A1 - Stennett, Tom A1 - Mattock, James A1 - Vollert, Ivonne A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Unsymmetrical, Cyclic Diborenes and Thermal Rearrangement to a Borylborylene T2 - Angewandte Chemie, International Edition N2 - Cyclic diboranes(4) based on a chelating monoanionic, benzylphosphine linker were prepared by boron-silicon exchange between arylsilanes and B\(_2\)Br\(_4\). Coordination of Lewis bases to the remaining sp\(^2\) boron atom yielded unsymmetrical sp\(^3\)-sp\(^3\) diboranes, which were reduced with KC\(_8\) to their corresponding trans-diborenes. These compounds were studied by a combination of spectroscopic methods, X-ray diffraction and DFT calculations. PMe\(_3\)-stabilized diborene 6 was found to undergo thermal rearrangement to gem- diborene 8. DFT calculations on 8 reveal a polar boron-boron bond, and indicate that the compound is best described as a borylborylene. KW - boron KW - borylene KW - multiple bonds KW - rearrangement KW - DFT calculations Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160258 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, J. D. Mattock, I. Vollert, A. Vargas, H. Braunschweig, Angew. Chem. Int. Ed. 2018, 57, 4098., which has been published in final form at DOI: 10.1002/anie.201800671. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 57 ER - TY - INPR A1 - Hermann, Alexander A1 - Arrowsmith, Merle A1 - Trujillo-Gonzalez, Daniel A1 - Jiménez-Halla, J. Oscar C. A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Trapping of a Borirane Intermediate in the Reductive Coupling of an Arylborane to a Diborene T2 - Journal of the American Chemical Society N2 - The reductive coupling of an NHC-stabilized aryldibromoborane yields a mixture of trans- and cis-diborenes in which the aryl groups are coplanar with the diborene core. Under dilute reduction conditions two diastereomers of a borirane-borane intermediate are isolated, which upon further reduction give rise to the aforementioned diborene mixture. DFT calculations suggest a mechanism proceeding via nucleophilic attack of a dicoordinate borylene intermediate on the aryl ring and subsequent intramolecular B-B bond formation. KW - boron KW - reactive intermediates KW - reductive coupling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203140 N1 - This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/jacs.0c02306 ER - TY - INPR A1 - Muessig, Jonas H. A1 - Thaler, Melanie A1 - Dewhurst, Rian D. A1 - Paprocki, Valerie A1 - Seufert, Jens A1 - Mattock, James D. A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Phosphine-Stabilized Diiododiborenes: Isolable Diborenes with Six Labile Bonds T2 - Angewandte Chemie, International Edition N2 - The lability of B=B, B-P and B-halide bonds is combined in the syntheses of the first diiododiborenes. In a series of reactivity tests, these diiododiborenes demonstrate cleavage of all six of their central bonds in different ways, leading to products of B=B hydrogenation and dihalogenation as well as halide exchange. KW - boron KW - low-valent main-group species KW - iodine KW - multiple bonding KW - 1,2-additions Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178608 N1 - This is the pre-peer reviewed version of the following article: J. H. Muessig, M. Thaler, R. D. Dewhurst, V. Paprocki, J. Seufert, J. D. Mattock, A. Vargas, H. Braunschweig, Angew. Chem. Int. Ed. 2019, 58, 4405, which has been published in final form at https://doi.org/10.1002/anie.201814230. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - INPR A1 - Wang, Sunewang Rixin A1 - Arrowsmith, Merle A1 - Braunschweig, Holger A1 - Dewhurst, Rian A1 - Dömling, Michael A1 - Mattock, James A1 - Pranckevicius, Conor A1 - Vargas, Alfredo T1 - Monomeric 16-Electron π-Diborene Complexes of Zn(II) and Cd(II) T2 - Journal of the American Chemical Society N2 - Despite the prevalence of stable π-complexes of most d\(^{10}\) metals, such as Cu(I) and Ni(0), with ethylene and other olefins, complexation of d\(^{10}\) Zn(II) to simple olefins is too weak to form isolable complexes due to the metal ion's limited capacity for π-backdonation. By employing more strongly donating π- ligands, namely neutral diborenes with a high-lying π(B=B) or- bital, monomeric 16-electron M(II)-diborene (M = Zn, Cd) π- complexes were synthesized in good yields. Metal–B2 π- interactions in both the solid and solution state were confirmed by single-crystal X-ray analyses and their solution NMR and UV-vis absorption spectroscopy, respectively. The M(II) centers adopt a trigonal planar geometry and interact almost symmetrically with both boron atoms. The MB2 planes significantly twist out of the MX\(_2\) planes about the M-centroid(B–B) vector, with angles rang- ing from 47.0° to 85.5°, depending on the steric interactions be- tween the diborene ligand and the MX\(_2\) fragment. KW - boron KW - transition metal complex KW - diborene Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153058 N1 - This is the pre-peer reviewed version of the following article: Journal of the American Chemical Society, 2017, 139 (31), pp 10661–10664, which has been published in final form at doi:10.1021/jacs.7b06644. ER - TY - INPR A1 - Wang, Sunewang R. A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Dellermann, Theresa A1 - Dewhurst, Rian D. A1 - Kelch, Hauke A1 - Krummenacher, Ivo A1 - Mattock, James D. A1 - Müssig, Jonas H. A1 - Thiess, Torsten A1 - Vargas, Alfredo A1 - Zhang, Jiji T1 - Engineering a Small HOMO-LUMO Gap and Intramolecular B–B Hydroarylation by Diborene/Anthracene Orbital Intercalation T2 - Angewandte Chemie, International Edition N2 - The diborene 1 was synthesized by reduction of a mixture of 1,2-di-9-anthryl-1,2-dibromodiborane(4) (6) and trimethylphosphine with potassium graphite. The X-ray structure of 1 shows the two anthryl rings to be parallel and their π(C\(_{14}\)) systems perpendicular to the diborene π(B=B) system. This twisted conformation allows for intercalation of the relatively high-lying π(B=B) orbital and the low-lying π* orbital of the anthryl moiety with no significant conjugation, resulting in a small HOMO-LUMO gap (HLG) and ultimately an unprecedented anthryl B–B bond hydroarylation. The HLG of 1 was estimated to be 1.57 eV from the onset of the long wavelength band in its UV–vis absorption spectrum (THF, λ\(_{onset}\) = 788 nm). The oxidation of 1 with elemental selenium afforded diboraselenirane 8 in quantitative yield. By oxidative abstraction of one phosphine ligand by another equivalent of elemental selenium, the B–B and C\(^1\)–H bonds of 8 were cleaved to give the cyclic 1,9-diboraanthracene 9. KW - boron KW - small HOMO-LUMO gap KW - diborenes KW - borylation KW - hydroarylation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148126 N1 - This is the pre-peer reviewed version of the following article: S. R. Wang, M. Arrowsmith, J. Böhnke, H. Braunschweig, T. Dellermann, R. D. Dewhurst, H. Kelch, I. Krummenacher, J. D. Mattock, J. H. Müssig, T. Thiess, A. Vargas, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 8009., which has been published in final form at DOI: 10.1002/anie.201704063. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 56 IS - 27 ER - TY - INPR A1 - Arrowsmith, Merle A1 - Mattock, James D. A1 - Böhnke, Julian A1 - Krummenacher, Ivo A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Direct access to a cAAC-supported dihydrodiborene and its dianion T2 - Chemical Communications N2 - The two-fold reduction of (cAAC)BHX\(_2\) (cAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene; X = Cl, Br) provides a facile, high-yielding route to the dihydrodiborene (cAAC)\(_2\)B\(_2\)H\(_2\). The (chloro)hydroboryl anion reduction intermediate was successfully isolated using a crown ether. Overreduction of the diborene to its dianion [(cAAC)\(_2\)B\(_2\)H\(_2\)]\(^{2−}\) causes a decrease in the B–B bond order whereas the B–C bond orders increase. KW - carbenes KW - diborenes KW - boron KW - main-group chemistry KW - diborynes Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164276 N1 - This is the pre-peer reviewed version of the following article: Chemical Communications, 2018, 54, 4669-4672 which has been published at DOI: 10.1039/C8CC01580E ER - TY - INPR A1 - Stennett, Tom A1 - Mattock, James A1 - Pentecost, Leanne A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Chelated Diborenes and their Inverse-Electron-Demand Diels- Alder Reactions with Dienes T2 - Angewandte Chemie, International Edition N2 - A doubly base-stabilized diborane based on a benzylphosphine linker was prepared by a salt elimination reaction between 2-LiC\(_6\)H\(_4\)CH\(_2\)PCy\(_2\).Et\(_2\)O and B\(_2\)Br\(_4\). This compound was reduced with KC8 to its corresponding diborene, with the benzylphosphine forming a five-membered chelate. The diborene reacts with butadiene, 2-trimethylsiloxy-1,3-butadiene and isoprene to form 4,5-diboracyclohexenes, which interconvert between their 1,1- (geminal) and 1,2- (vicinal) chelated isomers. The 1,1-chelated diborene undergoes a halide-catalysed isomerisation into its thermodynamically favoured 1,2-isomer, which undergoes Diels-Alder reactions more slowly than the kinetic product. KW - boron KW - cycloaddition KW - DFT calculations KW - chelates KW - low-valent compounds Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178268 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, J. D. Mattock, L. Pentecost, A. Vargas, H. Braunschweig, Angew. Chem. Int. Ed. 2018, 57, 15276., which has been published in final form at https://doi.org/10.1002/anie.201809217. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - JOUR A1 - Ewing, William C. A1 - Dellermann, Theresa A1 - Angel Wong, Y. T. A1 - Mattock, James D. A1 - Vargas, Alfredo A1 - Bryce, David L. A1 - Dewhurst, Rian D. A1 - Braunschweig, Holger T1 - \(\pi\)‐Complexes of Diborynes with Main Group Atoms JF - Chemistry – An Asian Journal N2 - We present herein an in‐depth study of complexes in which a molecule containing a boron‐boron triple bond is bound to tellurate cations. The analysis allows the description of these salts as true π complexes between the B−B triple bond and the tellurium center. These complexes thus extend the well‐known Dewar‐Chatt‐Duncanson model of bonding to compounds made up solely of p block elements. Structural, spectroscopic and computational evidence is offered to argue that a set of recently reported heterocycles consisting of phenyltellurium cations complexed to diborynes bear all the hallmarks of \(\pi\)‐complexes in the \(\pi\)‐complex/metallacycle continuum envisioned by Joseph Chatt. Described as such, these compounds are unique in representing the extreme of a metal‐free continuum with conventional unsaturated three‐membered rings (cyclopropenes, azirenes, borirenes) occupying the opposite end. KW - boron KW - main group elements KW - solid-state NMR KW - \(\pi\) interactions KW - multiple bonds Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214677 VL - 15 IS - 10 SP - 1553 EP - 1557 ER -