TY - JOUR A1 - Seefried, Lothar A1 - Mueller-Deubert, Sigrid A1 - Schwarz, Thomas A1 - Lind, Thomas A1 - Mentrup, Birgit A1 - Kober, Melanie A1 - Docheva, Denitsa A1 - Liedert, Astrid A1 - Kassem, Moustapha A1 - Ignatius, Anita A1 - Schieker, Matthias A1 - Claes, Lutz A1 - Wilke, Winfried A1 - Jakob, Franz A1 - Ebert, Regina T1 - A small scale cell culture system to analyze mechanobiology using reporter gene constructs and polyurethane dishes N2 - Mechanical forces are translated into biochemical signals and contribute to cell differentiation and phenotype maintenance. Mesenchymal stem cells and their tissuespecific offspring, as osteoblasts and chondrocytes, cells of cardiovascular tissues and lung cells are sensitive to mechanical loading but molecules and mechanisms involved have to be unraveled. It is well established that cellular mechanotransduction is mediated e.g. by activation of the transcription factor SP1 and by kinase signaling cascades resulting in the activation of the AP1 complex. To investigate cellular mechanisms involved in mechanotransduction and to analyze substances, which modulate cellular mechanosensitivity reporter gene constructs, which can be transfected into cells of interest might be helpful. Suitable small-scale bioreactor systems and mechanosensitive reporter gene constructs are lacking. To analyze the molecular mechanisms of mechanotransduction and its crosstalk with biochemically induced signal transduction, AP1 and SP1 luciferase reporter gene constructs were cloned and transfected into various cell lines and primary cells. A newly developed bioreactor and small-scale 24-well polyurethane dishes were used to apply cyclic stretching to the transfected cells. 1 Hz cyclic stretching for 30 min in this system resulted in a significant stimulation of AP1 and SP1 mediated luciferase activity compared to unstimulated cells. In summary we describe a small-scale cell culture/bioreactor system capable of analyzing subcellular crosstalk mechanisms in mechanotransduction, mechanosensitivity of primary cells and of screening the activity of putative mechanosensitizers as new targets, e.g. for the treatment of bone loss caused by both disuse and signal transduction related alterations of mechanotransduction. KW - Bioreaktor KW - Mechanical strain KW - mechanosensitive reporter KW - gene constructs KW - bioreactor Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68099 ER - TY - JOUR A1 - Moll, Corinna A1 - Reboredo, Jenny A1 - Schwarz, Thomas A1 - Appelt, Antje A1 - Schürlein, Sebastian A1 - Walles, Heike A1 - Nietzer, Sarah T1 - Tissue Engineering of a Human 3D in vitro Tumor Test System JF - Journal of Visualized Experiments N2 - Cancer is one of the leading causes of death worldwide. Current therapeutic strategies are predominantly developed in 2D culture systems, which inadequately reflect physiological conditions in vivo. Biological 3D matrices provide cells an environment in which cells can self-organize, allowing the study of tissue organization and cell differentiation. Such scaffolds can be seeded with a mixture of different cell types to study direct 3D cell-cell-interactions. To mimic the 3D complexity of cancer tumors, our group has developed a 3D in vitro tumor test system. Our 3D tissue test system models the in vivo situation of malignant peripheral nerve sheath tumors (MPNSTs), which we established with our decellularized porcine jejunal segment derived biological vascularized scaffold (BioVaSc). In our model, we reseeded a modified BioVaSc matrix with primary fibroblasts, microvascular endothelial cells (mvECs) and the S462 tumor cell line For static culture, the vascular structure of the BioVaSc is removed and the remaining scaffold is cut open on one side (Small Intestinal Submucosa SIS-Muc). The resulting matrix is then fixed between two metal rings (cell crowns). Another option is to culture the cell-seeded SIS-Muc in a flow bioreactor system that exposes the cells to shear stress. Here, the bioreactor is connected to a peristaltic pump in a self-constructed incubator. A computer regulates the arterial oxygen and nutrient supply via parameters such as blood pressure, temperature, and flow rate. This setup allows for a dynamic culture with either pressure-regulated pulsatile or constant flow. In this study, we could successfully establish both a static and dynamic 3D culture system for MPNSTs. The ability to model cancer tumors in a more natural 3D environment will enable the discovery, testing, and validation of future pharmaceuticals in a human-like model. KW - bioengineering KW - biomedical engineering KW - tissue engineering KW - biotechnology KW - cultured KW - tumor cells KW - cell culture KW - 3D in vitro models KW - bioreactor KW - dynamic culture conditions KW - tumor test system KW - primary cell isolation KW - BioVaSc KW - decellularization KW - equipment and supplies KW - cellular microenvironment KW - culture techniques KW - cell engineering KW - anatomy KW - physiology KW - molecular biology KW - cellular biology Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132277 UR - http://www.jove.com/video/50460 VL - 78 IS - e50460 ER - TY - JOUR A1 - Schmid, Richard A1 - Tarau, Ioana-Sandra A1 - Rossi, Angela A1 - Leonhardt, Stefan A1 - Schwarz, Thomas A1 - Schuerlein, Sebastian A1 - Lotz, Christian A1 - Hansmann, Jan T1 - In Vivo-Like Culture Conditions in a Bioreactor Facilitate Improved Tissue Quality in Corneal Storage JF - Biotechnology Journal N2 - The cornea is the most-transplanted tissue worldwide. However, the availability and quality of grafts are limited due to the current methods of corneal storage. In this study, a dynamic bioreactor system is employed to enable the control of intraocular pressure and the culture at the air-liquid interface. Thereby, in vivo-like storage conditions are achieved. Different media combinations for endothelium and epithelium are tested in standard and dynamic conditions to enhance the viability of the tissue. In contrast to culture conditions used in eye banks, the combination of the bioreactor and biochrom medium 1 allows to preserve the corneal endothelium and the epithelium. Assessment of transparency, swelling, and the trans-epithelial-electrical-resistance (TEER) strengthens the impact of the in vivo-like tissue culture. For example, compared to corneas stored under static conditions, significantly lower optical densities and significantly higher TEER values were measured (p-value <0.05). Furthermore, healing of epithelial defects is enabled in the bioreactor, characterized by re-epithelialization and initiated stromal regeneration. Based on the obtained results, an easy-to-use 3D-printed bioreactor composed of only two parts was derived to translate the technology from the laboratory to the eye banks. This optimized bioreactor facilitates noninvasive microscopic monitoring. The improved storage conditions ameliorate the quality of corneal grafts and the storage time in the eye banks to increase availability and reduce re-grafting. KW - bioreactor KW - corneal endothelium KW - corneal epithelium KW - corneal storage KW - tissue culture Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228620 VL - 13 IS - 1,1700344 ER - TY - THES A1 - Schwedhelm, Ivo Peter T1 - A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors T1 - Entwicklung und Etablierung einer Mikroskopieplattform zur zerstörungsfreien Messung der Aggregierung von hiPSCs in kleinmaßstäbigen Bioreaktor-Suspensionskulturen N2 - The culture of human induced pluripotent stem cells (hiPSCs) at large-scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Suspension cul- tures of hiPSCs are characterized by the self-aggregation of single cells into macroscopic cell aggre- gates that increase in size over time. The development of these free-floating aggregates is dependent on the culture vessel and thus represents a novel process parameter that is of particular interest for hiPSC suspension culture scaling. Further, aggregates surpassing a critical size are prone to spon- taneous differentiation or cell viability loss. In this regard, and, for the first time, a hiPSC-specific suspension culture unit was developed that utilizes in situ microscope imaging to monitor and to characterize hiPSC aggregation in one specific CSTR setup to a statistically significant degree while omitting the need for error-prone and time-intensive sampling. For this purpose, a small-scale CSTR system was designed and fabricated by fused deposition modeling (FDM) using an in-house 3D- printer. To provide a suitable cell culture environment for the CSTR system and in situ microscope, a custom-built incubator was constructed to accommodate all culture vessels and process control devices. Prior to manufacture, the CSTR design was characterized in silico for standard engineering parameters such as the specific power input, mixing time, and shear stress using computational fluid dynamics (CFD) simulations. The established computational model was successfully validated by comparing CFD-derived mixing time data to manual measurements. Proof for system functionality was provided in the context of long-term expansion (4 passages) of hiPSCs. Thereby, hiPSC aggregate size development was successfully tracked by in situ imaging of CSTR suspensions and subsequent automated image processing. Further, the suitability of the developed hiPSC culture unit was proven by demonstrating the preservation of CSTR-cultured hiPSC pluripotency on RNA level by qRT-PCR and PluriTest, and on protein level by flow cytometry. N2 - Die Vermehrung von humanen induzierten pluripotenten Stammzellen (hiPSCs) im Indus- triemaßstab wird durch skalierbare Bioprozesse in aktiv durchmischten Rührkessel-Bioreaktoren (CSTRs) ermöglicht. Hierbei zeichnet sich das Wachstum von hiPSCs durch die charakteristische Bildung von sphäroidischen Zellaggregaten aus, deren Durchmesser sich im Laufe der Kultivierung vergrößert. Die Agglomeration von hiPSCs ist sowohl abhängig vom Grad der Durchmischung als auch vom jeweiligen Kulturgefäß, und stellt somit einen wichtigen Prozessparameter dar, welcher während der Prozessskalierung berücksichtigt werden muss. Weiterhin weisen hiPSCs in Aggregaten, welche eine kritische Größe überschreiten, eine erhöhte Wahrscheinlichkeit auf, ihre Pluripotenz zu verlieren oder hinsichtlich ihrer Viabilität beeinträchtigt zu werden. Auf Grundlage dessen wurde im Rahmen dieser Arbeit eine Plattform für die Durchführung von hiPSCs-Suspensionskulturen en- twickelt, welche die zerstörungsfreie Überwachung des hiPSC-Aggregatwachstums in Echtzeit durch den Einsatz von in situ-Mikroskopie ermöglicht. Neben den eigens entworfenen Bioreaktoren, welche zum Großteil aus 3D-gedruckten Komponenten bestehen, wurde eine Peripherie in Form eines Inkubator-Prototyps entwickelt und konstruiert, welcher die Unterbringung der Bioreaktoren, der Systemkomponenten zur Erzeugung von Zellkulturbedingungen sowie einer in situ-Mikroskop- Spezialanfertigung gewährleistet. Als Ausgangspunkt der Entwicklung des CSTR Systems diente ein Strömungssimulationsmodell, welches dazu verwendet wurde, prozesstechnische Kennzahlen zu er- mitteln um das CSTR System hinsichtlich des spezifischen Leistungseintrags, der Mischzeit und der Scherbelastung zu charakterisieren. Das erstellte Simulationsmodell wurde zudem erfolgreich an- hand eines Messdatenabgleichs der Mischzeit hinsichtlich seiner Aussagekraft validiert. Des Weit- eren wurde die Funktionsfähigkeit des gesamten Systems durch Langzeitversuche belegt. Hierbei wurden hiPSCs in den entwickelten Bioreaktoren über einen Zeitraum von vier Passagen expandiert und das Aggregatwachstum mittels in situ-Mikroskopie in Kombination mit einer automatisierten Bildauswertung beschrieben. Überdies hinaus wurde die Qualität der kultivierten hiPSCs hinsichtlich ihrer Differenzierungskapazität durch den Nachweis von Pluripotenzmarkern auf RNA (qRT-PCR und PluriTest) sowie Proteinebene (Durchflusszytometrie) untersucht. KW - Induzierte pluripotente Stammzelle KW - Mikroskopie KW - Suspensionskultur KW - Aggregation KW - in situ microscopy KW - bioreactor KW - hiPSC aggregation KW - Bioreaktor KW - iPSC Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192989 ER - TY - THES A1 - Schulz, Christian Andreas T1 - Tissue Engineering einer autologen Neofaszie in Kombination mit synthetischen Netzen im dynamischen Bioreaktor: Morphometrie und explorative Gen-Expressionsanalyse T1 - Tissue Engineering of an autologue neofascia in combination with synthetic meshes in a dynamic bioreactor: morphometrie and explorative analysis of gene-expression N2 - Zusammenfassung Einleitung: Die Inzidenz von Narbenhernien (operativ erworbene Schwachstellen der Bauchwand) ist abhängig von der Art der vorhergegangen Operation, nach Laparaskopien ist sie um einiges niedriger als nach Laparotomien, wird aber mit 2-20% in der Literatur angegeben. Aufgrund der möglichen Komplikationen (Platzbauch, Darminkarzeration, Schmerzen, Funktionseinschränkung, …) stellen Narbenhernien oftmals große Belastungen für die Patienten dar. Die operative Sanierung, in Abhängigkeit von Größe und Lage, wird zumeist durch einbringen eines Netzgewebes erreicht. Dieser Fremdkörper kann seinerseits wieder Komplikationen hervorrufen (Infektionen, Funktionsverlust, Schmerzen, Fisteln), die bis zur Explantation des Netzgewebes führen können. Das Risiko für das Auftreten von Narbenhernien bzw. deren Rezidiven hängt von vielen Faktoren ab, als Risikofaktoren wurden unter anderem Rauchen, männliches Geschlecht, Alter >45 Jahre und ein BMI >25 kg/cm² ausgemacht. Ein Teilbereich des Tissue Engineerings ist die Entwicklung von Modellen, anhand derer in vitro Prozesse des menschlichen Körpers nachvollzogen werden können. Mit dieser Arbeit soll ein Modell etabliert werden Anhand dessen die Untersuchung der Kollagenproduktion und der Netzinkorporation bzw. die Auswirkungen verschiedener Risikofaktoren auf diese Prozesse in vitro ermöglicht werden soll. Weiterhin wurden Studienfragen formuliert, die sich sowohl mit der Durchführbarkeit dieser Methode abzielten, als auch gezielt nach der Stützung der These der „guten und schlechten Heiler“ durch diese Arbeit abzielten. Sowie nach der Vergleichbarkeit der Ergebnisse mit bekannten Kollagenmustern die aus Netzexplantaten bekannt sind. Material und Methode: Für die vorliegende Arbeit wurden Biopsien von Faszien bzw. Narbenhernien im Rahmen einer Operation gewonnen, aus diesen wurden die Fibroblasten isoliert und anschliessend entweder eingefroren bzw. expandiert, um sie in einer Rattenkollagenmatrix mit und ohne synthetischem Netz im dynamisch mechanischen Bioreaktor zu kultivieren. Die Biopsien wurden Anhand der Kollagen I/III Ratio in „gute und schlechte Heiler“ eingruppiert. Anschließend wurden die so gezüchteten Neofaszien HE und Pikrosiriusrot gefärbt um zum einen einen Eindruck von der Verteilung der Fibroblasten innerhalb der Neofaszie zu gewinnen, als auch Aussagen zum Kollagenmuster, der Kollagen I/III Ratio und zur Kollagendensität treffen zu können. Die Dicke der kultivierten Neofaszien wurde sowohl in Sirius als auch in HE Färbung untersucht. Weiterhin wurden RT-PCR und Gene Arrays von Nativgeweben und von Neofaszien mit unterschiedlichen Netztypen durchgeführt. Ergebnisse: Bei gesunden Probanden konnten oftmals nicht genügend Zellen aus den Faszienbiopsaten gewonnen werden, deshalb wurde im Verlauf der Arbeit auf die Gewinnung von gesundem Fasziengewebe als Vergleichsgruppe verzichtet. Fibroblasten von als „schlechten Heilern“ klassifizierten Patienten zeigten meist ein langsameres Wachstum in der Expansionsphase. Der Bioreaktor bereitete kaum Probleme (ein paar Faszien trockneten anfänglich aus, dieses Problem lies sich durch bei Bedarf verkürzten Medienwechselintervallen in den Griff bekommen. Probleme mit Kontaminationen traten nicht auf. Bei den Histologischen Untersuchungen der Neofaszien waren Fibroblasten über den gesamten Bereich der Neofaszie zu sehen, auch in unmittelbarer Umgebung der Netzstrukturen. Die Kollagenmuster stimmten in Ansätzen mit den aus klinischen Netzexplantaten bekannten Mustern überein (Polydirektional bei Polyesternetz, Konzentrisch um die Netzstrukturen bei Polypropylen). Weiterhin war eine verstärkte Kollagenbildung quer zur Druckrichtung des Bioreaktors zu erkennen. Bei der Betrachtung der Dicke der Neofaszien zeigte sich (unter Vorbehalt, aufgrund der geringen Probenanzahl) eine Tendenz zu meist dünneren Faszien bei „schlechten Heilern“ während die Neofaszien von „guten Heilern“ meist eine kleinere Streuung um den Mittelwert zeigten (einheitlicher waren). Die Kollagendensität und auch die Kollagen I/III Ratio lieferten Ergebnisse Anhand derer Gesagt werden kann, dass je höher die Ausgangswerte im Nativgewebe waren, diese mit höherer Wahrscheinlichkeit von den Neofaszien nicht erreicht werden konnten. qRT-PCR und Gene Array zeigten in der Rangkorrelation nach Spearman große Übereinstimmungen. Beantwortung der Studienfragen: Es konnte gezeigt werden, dass es möglich ist Neofaszien mit synthetischen Netzen zu züchten, die über den gesamten Bereich mit Fibroblasten besiedelt waren. Die Ergebnisse der Kollagenmorphologie zeigten in Ansätzen die aus Netzexplantaten bekannten Muster. Bei Kollagen I/III Ratio und Densität war lediglich erkennbar, dass je höher die Ausgangswerte waren, diese mit zunehmender Wahrscheinlichkeit nicht reproduziert werden konnten. Es ließ sich keine Verbindung zwischen der Kollagen I/III Ratio der Histologischen Gewebeproben und den Molekularbiologischen Ergebnissen feststellen. Weiterhin konnte die Theorie der „guten und schlechten Heiler“ molekularbiologisch nicht gestützt werden, da die Proben der als „schlechte Heiler“ Klassifizierten Biopsien stärkere Gemeinsamkeiten mit als „gute Heiler“ Klassifizierten Biopsien aufwiesen als untereinander. Es konnte gezeigt werden dass die Kultur auf die MMP-8 und Elastinproduktion keinen Einfluss zu haben scheint. Diskussion: Im Verlauf der Diskussion wurde darauf hingewiesen, dass die Kollagensynthese, und Sekretion ein komplexes und höchst aktives System darstellt, welches im Rahmen der Wundheilung durch Co-Signalling, und der Interaktion zwischen Fibroblasten und Immunzellen (Makrophagen…) nochmals verändert wird, auch dadurch bedingt, dass Fibroblasten im Verlauf der Wundheilung selbst als immunmodulierende Zellen in Erscheinung treten können. So können weiterhin die Kollagen kodierenden Gene (Col1A1, Col1A2, Col3A1) als Marker für die Kollagenaktivität herangezogen werden, da aber zwischen Synthese und Sekretion des Kollagens ein nicht zu vernachlässigender Teil bereits intrazellulär wieder abgebaut wird kann nur durch Betrachtung dieser Gene die Theorie der „guten und schlechten Heiler“ nicht gestützt werden. Durch die hohe Korrelation der Ergebnisse aus gene-Array und qRT-PCR könnte für die Zukunft vorläufig auf die Durchführung von qRT-PCR verzichtet werden, um eventuell unterschiedliche Pathways mit dem Gene-Array zu identifizieren. Offene Fragen Ausblick und Perspektiven: Da das System der Wundheilung und Kollagensynthese und –Sekretion sehr komplex ist sollte für die Zukunft durch eine Kokultur mit Makrophagen bzw. durch die Zugabe von TNF-α, IL-6, PDGF, G-CSF, GM-CSF, Vitamin C oder Lysyloxidase zum Kulturmedium, geprüft werden ob sich eine Aktivitätsveränderung der Fibroblasten und damit eine andere Neofaszienstruktur erreichen lässt. Weiterhin sollte um einer Verfälschung der Ergebnisse durch das für die Gele verwendete Rattenkollagen vorzubeugen, entweder die Kulturdauer verlängert werden (mit dem Gedanken dass dann das gesamte Rattenkollagen durch humanes ersetzt wurde) bzw. ein Kollagenfreies Gel als Trägerstruktur entwickelt und verwendet werden. Um eine bessere Vergleichbarkeit der Ergebnisse des Gene-Arrays aus Spenderbiopsie und Neofaszie zu erreichen sollten die zur RNA-Gewinnung verwendeten Anteile der Biopsie noch innerhalb des OP in RNA-later bzw. in flüssigen Stickstoff gegeben werden, um einer verstärkten Degradation vorzubeugen. N2 - Summary Introduction: The incidence of scar hernias (surgically acquired weaknesses of the abdominal wall) depends on the type of previous operation, after laparascopies it is much lower than after laparotomies, but is reported to be 2-20% in the literature. Due to the possible complications (burst abdomen, intestinal incarceration, pain, functional limitations, ...), scar hernias often represent a great burden for patients. Surgical restoration, depending on size and location, is usually achieved by inserting a mesh tissue. This foreign body in turn can cause complications (infections, loss of function, pain, fistulas), which can lead to explantation of the mesh tissue. The risk of the occurrence of scar hernias or their recurrence depends on many factors, including smoking, male sex, age >45 years and a BMI >25 kg/cm². One goal of tissue engineering is the development of in vitro models to reproduce processes of the human body. The aim of this work is to establish a model that will enable the investigation of collagen production and mesh incorporation and the effects of different risk factors on these processes in vitro. Study questions were formulated, that were aimed to prove the feasibility of this method, to see if the results support the thesis of "good and bad healers", and to compare the results with known collagen patterns from net implants. Material and method: Biopsies of fascia and scar hernias were obtained during an abdominal surgery, from this tissue the fibroblasts were isolated and then either frozen or expanded in order to cultivate them in a rat collagen matrix with and without synthetic meshes in a dynamic-mechanical bioreactor. The biopsies were grouped into "good and bad healers" using the collagen I/III ratio. The neofasciae were then stained (HE and Pikrosirius red) to gain an impression of the distribution of the fibroblasts within the neofascia and to be able to make statements about the collagen pattern, the collagen I/III ratio and the collagen density. The thickness of the cultured neofascia was investigated in both Sirius and HE staining. Furthermore, RT-PCR and gene arrays of native tissues and neofascia with different net types were performed. Results: In healthy volunteers, it was often not possible to obtain a sufficient number of fibrobasts from the fascia biopsies. Therefore, in the course of the study, healthy fascia tissue was not obtained as a comparison group. Fibroblasts from patients classified as "bad healers" usually showed slower growth in the expansion phase. The bioreactor caused hardly any problems (a few fasciae initially dried out, this problem could be solved by shortening the intervals between media changes if necessary). Problems with contamination did not occur. During the histological examination of the neofascia, fibroblasts were visible over the entire area of the neofascia, even in the immediate vicinity of the mesh structures. The collagen patterns were similar to those already known from clinical mesh explants (polydirectional in the case of polyester mesh, concentric around the mesh structures in the case of polypropylene). Furthermore, an increased collagen formation transverse to the pressure direction of the bioreactor could be observed. When considering the thickness of the neofasciae, a tendency towards thinner fasciae in "bad healers" was observed (with reservations, due to the small number of samples), whereas the neofasciae of "good healers" showed a smaller scatter around the mean value (were more uniform). The collagen density and also the collagen I/III ratio also showed results, to state: the higher the initial values in the native tissue, the higher the probability that these could not be achieved by the neofasciae. qRT-PCR and Gene Array showed a high correlation (rank correlation according to Spearman). Answering the study questions: It could be shown that it is possible to breed neofasciae with synthetic meshes that were colonized with fibroblasts over the entire area. The results of the collagen morphology showed patterns known from mesh explants. With collagen I/III ratio and density it was only recognizable that the higher the initial values were, the more likely it was that they could not be reproduced. There was no connection between the collagen I/III ratio of the histological tissue samples and the molecular biological results. Furthermore, the theory of "good and bad healers" could not be supported by molecular biology, since the samples of the biopsies classified as "bad healers" had more in common with biopsies classified as "good healers" than with each other. It could be shown that the culture does not seem to have any influence on MMP-8 and elastin production. Discussion: In the course of the discussion, it was pointed out that collagen synthesis and secretion is a complex and highly active system, which is further altered in the context of wound healing by co-signalling and the interaction between fibroblasts and immune cells (macrophages...), also due to the fact that fibroblasts themselves can appear as immunomodulating cells in the course of wound healing. Thus, the collagen coding genes (Col1A1, Col1A2, Col3A1) can still be used as markers for collagen activity, but since between synthesis and secretion of the collagen a not negligible part is already degraded intracellularly, the theory of "good and bad healers" cannot be supported only by considering these genes. Due to the high correlation of the results from gene arrays and qRT-PCR, the use of qRT-PCR could be dispensed with for the time being in order to identify possible different pathways with the gene array. Open questions Outlook and perspectives: The system of wound healing and collagen synthesis and secretion is very complex, it should be examined whether a change in the activity of the fibroblasts and thus a different neofascia structure can be achieved in the future by cocultivation with macrophages or by adding TNF-α, IL-6, PDGF, G-CSF, GM-CSF, vitamin C or lysyl oxidase to the culture medium. Furthermore, in order to prevent falsification of the results by the rat collagen used for the culture medium, either the culture duration should be extended (with the thought that the entire rat collagen was then replaced by human collagen) or a collagen-free culture medium should be developed and used as carrier structure. In order to achieve a better comparability of the results of the gene array from donor biopsy and neofascia, the parts of the biopsy used for RNA extraction should be given in RNA later or in liquid nitrogen in the OR (operation room) to prevent an increased degradation. KW - Hernie KW - Hernia KW - Regenerative Medizin KW - Tissue Engineering KW - Herniengesellschaft KW - regenerative Medicine KW - tissue engineering KW - meshes KW - bioreactor Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191876 ER - TY - THES A1 - Heydarian, Motaharehsadat T1 - Development of human 3D tissue models for studying \(Neisseria\) \(gonorrhoeae\) infection T1 - Entwicklung menschlicher 3D-Gewebemodelle zur Untersuchung der Infektion mit \(Neisseria\) \(gonorrhoeae\) N2 - Gonorrhea is the second most common sexually transmitted infection worldwide and is caused by Gram-negative, human-specific diplococcus Neisseria gonorrhoeae. It colonizes the mucosal surface of the female reproductive tract and the male urethra. A rapid increase in antibiotic resistance makes gonorrhea a serious threat to public health worldwide. Since N. gonorrhoeae is a human-specific pathogen, animal infection models are not able to recapitulate all the features of infection. Therefore, a realistic in vitro cell culture model is urgently required for studying the gonorrhea infection. In this study, we established and characterized three independent 3D tissue models based on the porcine small intestinal submucosa (SIS) scaffold by co-culturing human dermal fibroblasts with human colorectal carcinoma, endometrial epithelial, and male uroepithelial cells. The histological, immunohistochemical, and ultra-structural analysis showed that the 3D SIS scaffold-based models closely mimic the main characteristics of the site of gonococcal infection in the human host including the formation of epithelial monolayer, underlying connective tissue, mucus production, tight junction (TJ), and microvilli. In addition, functional analysis such as transepithelial electrical resistance (TEER) and barrier permeability indicated high barrier integrity of the cell layer. We infected the established 3D tissue models with different N. gonorrhoeae strains and derivatives presenting various phenotypes regarding adhesion and invasion. The results showed disruption of TJs and growing the interleukins production in response to the infection, which depends on the type of strain and cell. In addition, the 3D tissue models supported bacterial survival, which provided an appropriate in vitro model for long-term infection study. This could be mainly because of the high resilience of the 3D tissue models based on the SIS scaffold to the infection in terms of alteration in permeability, cell destruction, and bacterial transmigration. During gonorrhea infection, a high level of neutrophils migrates to the site of infection. The studies also showed that N. gonorrhoeae can survive or even replicate inside the neutrophils. Therefore, studying the interaction between neutrophils and N. gonorrhoeae is substantially under scrutiny. For this purpose, we generated a 3D tissue model by triple co-culturing of human primary fibroblast cells, human colorectal carcinoma cells, and human umbilical vein endothelial cells. The tissue model was subsequently infected by N. gonorrhoeae. A perfusion-based bioreactor system was employed to recreate blood flow in the side of endothelial cells and consequently study human neutrophils transmigration to the site of infection. We observed neutrophils activation upon the infection. Furthermore, we demonstrated the uptake of N. gonorrhoeae by human neutrophils and reverse transmigration of neutrophils to the basal side carrying N. gonorrhoeae. In summary, the introduced 3D tissue models in this research represent a promising tool to investigate N. gonorrhoeae infections under close-to-natural conditions. N2 - Tripper ist die zweithäufigste sexuell übertragbare Krankheit weltweit und wird durch Gram negative, humanspezifische Diplokokken Neisseria gonorrhoeae verursacht. Das human Pathogen besiedelt die Schleimhautoberfläche des weiblichen Fortpflanzungstraktes und der männlichen Harnröhre. Die rasante Zunahme der Antibiotikaresistenzen macht Gonorrhö zu einer ernsthaften Bedrohung für die öffentliche Gesundheit weltweit. Da N. gonorrhoeae ein humanspezifischer Erreger ist, ist es nicht möglich alle Merkmale einer Infektion in Tiermodellen nachzustellen, daher ist ein realistisches In-vitro-Zellkulturmodell für die Untersuchung der Gonorrhö-Infektion dringend erforderlich. In dieser Studie haben wir drei unabhängige 3D- Gewebemodelle etabliert und charakterisiert, die auf dem Gerüst der Schweine-Submukosa (SIS) basieren, indem wir menschliche dermale Fibroblasten mit menschlichen Darmkrebs-, Endometrialepithel- und männlichen Uroepithelzellen kultivieren. Die histologischen, immunhistochemischen und ultrastrukturellen Analysen zeigten, dass die 3D SIS-Gerüstmodelle die Hauptmerkmale der Stelle der Gonokokken Infektion im menschlichen Wirt genau nachahmen, indem sich Epithelien Monoschichten ausbildeten, unter denen sich Bindegewebe erstrechte. Zudem wiesen die Zellen enge Zell-Zell Kontakte auf und es kam zur Produktion von einer Mukosaschicht sowie Mikrovilli in den Modellen. Darüber hinaus zeigten Funktionsanalysen wie die Messung des transepithelialen elektrischen Widerstands (TEER) und die der Barriere Durchlässigkeit eine hohe Barriere Integrität der Zellschicht. Wir haben die etablierten 3D- Gewebemodelle mit verschiedenen N. gonorrhoeae-Stämmen und Derivaten infiziert, die verschiedene Phänotypen bezüglich der Adhäsion und der Invasion aufwiesen. Die Ergebnisse zeigten eine Unterbrechung der engen Zellverbindungen und eine Zunahme der Interleukin Produktion als Reaktion auf die Infektion, dessen Ausprägung allerdings stark von der Art des Stammes und des verwendeten Zelltyps abhängig ist. Darüber hinaus unterstützten die 3D- Gewebemodelle das bakterielle Überleben, was ein geeignetes In-vitro-Modell für Langzeit- Infektionsstudien liefert. Dies könnte vor allem auf die hohe Widerstandsfähigkeit der SIS- Gerüstmodelle gegen Infektionen in Bezug auf Veränderung der Permeabilität, Zellzerstörung und Bakterienwanderung zurückzuführen sein. Während der Gonorrhoe-Infektion wandert ein hoher Anteil an Neutrophilen an den Ort der Infektion. Die Studie zeigte auch, dass N. gonorrhoeae in den Neutrophilen überleben konnten oder sich sogar in diesen vermehren konnten. Deshalb wurde besonderes die Interaktion zwischen Neutrophilen und N. gonorrhoeae näher betrachtet. Zu diesem Zweck haben wir ein 3D-Gewebemodell mit Hilfe einer dreifache Co-Kultivierung von menschlichen primären Fibroblasten Zellen, menschlichen kolorektalen Karzinomzellen und menschlichen Nabelvenenendothelzellen erstellt. Das Gewebemodell wurde anschließend mit N. gonorrhoeae infiziert. Ein perfusionsbasiertes Bioreaktorsystem wurde eingesetzt, um den Blutfluss auf der Seite der Endothelzellen nachzuahmen und somit konnte die Auswanderung menschlicher Neutrophile zur Infektionsstelle untersucht werden. Darüber hinaus konnte mit diesem Modell die Aufnahme von N. gonorrhoeae in menschliche Neutrophilen und deren Rückwanderung in den Blutfluss beladen mit N. gonorrhoeae nachgewiesen werden. Zusammenfassend lässt sich sagen, dass das in dieser Forschung vorgestellte 3D-Gewebemodell ein vielversprechendes Instrument zur Untersuchung von N. gonorrhoeae-Infektionen unter naturnahen Bedingungen darstellt. KW - 3D-Gewebemodell KW - 3D tissue model KW - Neisseria gonorrhoeae KW - Co-Kultur KW - Bioreaktor KW - Neutrophil KW - co-culture KW - bioreactor KW - neutrophil Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204967 ER -