TY - JOUR A1 - Ruck, Tobias A1 - Bittner, Stefan A1 - Afzali, Ali Maisam A1 - Göbel, Kerstin A1 - Glumm, Sarah A1 - Kraft, Peter A1 - Sommer, Claudia A1 - Kleinschnitz, Christoph A1 - Preusse, Corinna A1 - Stenzel, Werner A1 - Wiendl, Heinz A1 - Meuth, Sven G. T1 - The NKG2D-IL-15 signaling pathway contributes to T-cell mediated pathology in inflammatory myopathies JF - Oncotarget N2 - NKG2D is an activating receptor on T cells, which has been implicated in the pathogenesis of autoimmune diseases. T cells are critically involved in idiopathic inflammatory myopathies (IIM) and have been proposed as specific therapeutic targets. However, the mechanisms underlying T cell-mediated progressive muscle destruction in IIM remain to be elucidated. We here determined the involvement of the NKG2D - IL-15 signaling pathway. Primary human myoblasts expressed NKG2D ligands, which were further upregulated upon inflammatory stimuli. In parallel, shedding of the soluble NKG2D ligand MICA (sMICA) decreased upon inflammation potentially diminishing inhibition of NKG2D signaling. Membrane-related expression of IL-15 by myoblasts induced differentiation of naive CD8\(^+\) T cells into highly activated, cytotoxic \(CD8^+NKG2D^{high}\) T cells demonstrating NKG2D-dependent lysis of myoblasts in vitro. \(CD8^+NKG2D^{high}\) T cell frequencies were increased in the peripheral blood of polymyositis (PM) patients and correlated with serum creatinine kinase concentrations, while serum sMICA levels were not significantly changed. In muscle biopsy specimens from PM patients expression of the NKG2D ligand MICA/B was upregulated, IL-15 was expressed by muscle cells, CD68\(^+\) macrophages as well as CD4\(^+\) T cells, and \(CD8^+NKG2D^+\) cells were frequently detected within inflammatory infiltrates arguing for a local signaling circuit in the inflammatory muscle milieu. In conclusion, the NKG2D - IL-15 signaling pathway contributes to progressive muscle destruction in IIM potentially opening new therapeutic avenues. KW - MIC ligands KW - pathology section KW - T cell activation KW - idiopathic inflammatory myopathies KW - polymyositis KW - IL-15 KW - NKG2D KW - receptor KW - expression KW - lymphokine-activated killer KW - human muscle-cells KW - multiple sclerosis KW - celiac disease KW - tumor immunity KW - NKG2D ligands KW - cutting edge Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136047 VL - 6 IS - 41 ER - TY - JOUR A1 - Bittner, Stefan A1 - Bobak, Nicole A1 - Hofmann, Majella-Sophie A1 - Schuhmann, Michael K. A1 - Ruck, Tobias A1 - Göbel, Kerstin A1 - Brück, Wolfgang A1 - Wiendl, Heinz A1 - Meuth, Sven G. T1 - Murine K\(_{2P}\)5.1 Deficiency Has No Impact on Autoimmune Neuroinflammation due to Compensatory K\(_{2P}\)3.1-and K\(_{V}\)1.3-Dependent Mechanisms JF - International Journal of Molecular Sciences N2 - Lymphocytes express potassium channels that regulate physiological cell functions, such as activation, proliferation and migration. Expression levels of K\(_{2P}\)5.1(TASK2; KCNK5) channels belonging to the family of two-pore domain potassium channels have previously been correlated to the activity of autoreactive T lymphocytes in patients with multiple sclerosis and rheumatoid arthritis. In humans, K\(_{2P}\)5.1 channels are upregulated upon T cell stimulation and influence T cell effector functions. However, a further clinical translation of targeting K\(_{2P}\)5.1 is currently hampered by a lack of highly selective inhibitors, making it necessary to evaluate the impact of KCNK5 in established preclinical animal disease models. We here demonstrate that K\(_{2P}\)5.1 knockout (K\(_{2P}\)5.1\(^{-/-}\) mice display no significant alterations concerning T cell cytokine production, proliferation rates, surface marker molecules or signaling pathways. In an experimental model of autoimmune neuroinflammation, K\(_{2P}\)5.1\(^{-/-}\) mice show a comparable disease course to wild-type animals and no major changes in the peripheral immune system or CNS compartment. A compensatory upregulation of the potassium channels K\(_{2P}\)3.1 and K\(_{V}\)1.3 seems to counterbalance the deletion of K\(_{2P}\)5.1. As an alternative model mimicking autoimmune neuroinflammation, experimental autoimmune encephalomyelitis in the common marmoset has been proposed, especially for testing the efficacy of new potential drugs. Initial experiments show that K\(_{2P}\)5.1 is functionally expressed on marmoset T lymphocytes, opening up the possibility for assessing future K\(_{2P}\)5.1-targeting drugs. KW - domain potassium channels KW - volume regulation KW - multiple-sclerosis KW - potassium channels KW - multiple sclerosis KW - ion channels KW - K+ channel KW - T lymphocytes KW - up-regulation KW - TASK2 KW - K2P channels KW - B cells KW - ph KW - K\(_{2P}\)5.1 KW - KCNK5 KW - autoimmune neuroinflammation KW - EAE Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151454 VL - 16 SP - 16880 EP - 16896 ER - TY - JOUR A1 - Vogelsang, Anna A1 - Eichler, Susann A1 - Huntemann, Niklas A1 - Masanneck, Lars A1 - Böhnlein, Hannes A1 - Schüngel, Lisa A1 - Willison, Alice A1 - Loser, Karin A1 - Nieswandt, Bernhard A1 - Kehrel, Beate E. A1 - Zarbock, Alexander A1 - Göbel, Kerstin A1 - Meuth, Sven G. T1 - Platelet inhibition by low-dose acetylsalicylic acid reduces neuroinflammation in an animal model of multiple sclerosis JF - International Journal of Molecular Sciences N2 - Aside from the established immune-mediated etiology of multiple sclerosis (MS), compelling evidence implicates platelets as important players in disease pathogenesis. Specifically, numerous studies have highlighted that activated platelets promote the central nervous system (CNS)-directed adaptive immune response early in the disease course. Platelets, therefore, present a novel opportunity for modulating the neuroinflammatory process that characterizes MS. We hypothesized that the well-known antiplatelet agent acetylsalicylic acid (ASA) could inhibit neuroinflammation by affecting platelets if applied at low-dose and investigated its effect during experimental autoimmune encephalomyelitis (EAE) as a model to study MS. We found that oral administration of low-dose ASA alleviates symptoms of EAE accompanied by reduced inflammatory infiltrates and less extensive demyelination. Remarkably, the percentage of CNS-infiltrated CD4\(^+\) T cells, the major drivers of neuroinflammation, was decreased to 40.98 ± 3.28% in ASA-treated mice compared to 56.11 ± 1.46% in control animals at the disease maximum as revealed by flow cytometry. More interestingly, plasma levels of thromboxane A\(_2\) were decreased, while concentrations of platelet factor 4 and glycoprotein VI were not affected by low-dose ASA treatment. Overall, we demonstrate that low-dose ASA could ameliorate the platelet-dependent neuroinflammatory response in vivo, thus indicating a potential treatment approach for MS. KW - acetylsalicylic acid KW - experimental autoimmune encephalomyelitis KW - platelets KW - multiple sclerosis KW - thromboxane KW - glycoprotein VI KW - platelet factor 4 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284535 SN - 1422-0067 VL - 22 IS - 18 ER -