TY - JOUR A1 - Kolb-Mäurer, Annette A1 - Sunderkötter, Cord A1 - Kukowski, Borries A1 - Meuth, Sven G. T1 - An update on Peginterferon beta-1a Management in Multiple Sclerosis: results from an interdisciplinary Board of German and Austrian Neurologists and dermatologists JF - BMC Neurology N2 - Background: Interferon (IFN) beta drugs have been approved for the treatment of relapsing forms of multiple sclerosis (RMS) for more than 20years and are considered to offer a favourable benefit-risk profile. In July 2014, subcutaneous (SC) peginterferon beta-1a 125g dosed every 2weeks, a pegylated form of interferon beta-1a, was approved by the EMA for the treatment of adult patients with RRMS and in August 2014 by the FDA for RMS. Peginterferon beta-1a shows a prolonged half-life and increased systemic drug exposure resulting in a reduced dosing frequency compared to other available interferon-based products in MS. In the Phase 3 ADVANCE trial peginterferon beta-1a demonstrated significant positive effects on clinical and MRI outcome measures versus placebo after one year. Furthermore, in the ATTAIN extension study, sustained efficacy with long-term treatment for nearly 6years was shown. Main text In July 2016, an interdisciplinary panel of German and Austrian experts convened to discuss the management of side effects associated with peginterferon beta-1a and other interferon beta-based treatments in MS in daily practice. The panel was composed of experts from university hospitals and private clinics comprised of neurologists, dermatologists, and an MS nurse. In this paper we report recommendations regarding best practices for adverse event management, focussing on peginterferon beta-1a. Injection site reactions (ISRs) and influenza-like illness are the most common adverse effects of interferon beta therapies and can present a burden for MS patients leading to non-adherence and discontinuation of therapy. Peginterferon beta-1a shows improved pharmacological properties. In clinical trials, the adverse event (AE) profile of peginterferon beta-1a was similar to other interferon beta formulations. The most common AEs were mild to moderate ISRs, influenza-like illness, pyrexia, and headache. Current information on the underlying cause of skin reactions associated with SC interferon treatment, and the management strategies for these AEs are limited. In pivotal trials, ISRs were mainly characterized and classified by neurologists, while dermatologists were only rarely consulted. Conclusions This report addresses expert recommendations on the management of most relevant adverse effects related to peginterferon beta-1a and other interferon betas, based on literature and interdisciplinary experience. KW - multiple sclerosis KW - peginterferon bet-1a KW - interferon beta KW - flu-like symptoms KW - injection site reactions KW - management Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224646 VL - 19 ER - TY - JOUR A1 - Haarmann, Axel A1 - Schuhmann, Michael K. A1 - Silwedel, Christine A1 - Monoranu, Camelia-Maria A1 - Stoll, Guido A1 - Buttmann, Mathias T1 - Human brain endothelial CXCR2 is inflammation-inducible and mediates CXCL5- and CXCL8-triggered paraendothelial barrier breakdown JF - International Journal of Molecular Science N2 - Chemokines (C-X-C) motif ligand (CXCL) 5 and 8 are overexpressed in patients with multiple sclerosis, where CXCL5 serum levels were shown to correlate with blood–brain barrier dysfunction as evidenced by gadolinium-enhanced magnetic resonance imaging. Here, we studied the potential role of CXCL5/CXCL8 receptor 2 (CXCR2) as a regulator of paraendothelial brain barrier function, using the well-characterized human cerebral microvascular endothelial cell line hCMEC/D3. Low basal CXCR2 mRNA and protein expression levels in hCMEC/D3 were found to strongly increase under inflammatory conditions. Correspondingly, immunohistochemistry of brain biopsies from two patients with active multiple sclerosis revealed upregulation of endothelial CXCR2 compared to healthy control tissue. Recombinant CXCL5 or CXCL8 rapidly and transiently activated Akt/protein kinase B in hCMEC/D3. This was followed by a redistribution of tight junction-associated protein zonula occludens-1 (ZO-1) and by the formation of actin stress fibers. Functionally, these morphological changes corresponded to a decrease of paracellular barrier function, as measured by a real-time electrical impedance-sensing system. Importantly, preincubation with the selective CXCR2 antagonist SB332235 partially prevented chemokine-induced disturbance of both tight junction morphology and function. We conclude that human brain endothelial CXCR2 may contribute to blood–brain barrier disturbance under inflammatory conditions with increased CXCL5 and CXCL8 expression, where CXCR2 may also represent a novel pharmacological target for blood–brain barrier stabilization. KW - blood–brain barrier KW - multiple sclerosis KW - human cerebral endothelial cells KW - CXCR2 KW - CXCL5 KW - CXCL8 KW - interleukin-8 KW - SB332235 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201297 SN - 1422-0067 VL - 20 IS - 3 ER -