TY - THES A1 - Mühlemann, Markus T1 - Intestinal stem cells and the Na\(^+\)-D-Glucose Transporter SGLT1: potential targets regarding future therapeutic strategies for diabetes T1 - Intestinale Stammzellen und der Na\(^+\)-D-Glukose Transporter SGLT1: potentielle Ansatzpunkte neuartiger Therapien für Diabetes Patienten N2 - The pancreas and the small intestine are pivotal organs acting in close synergism to regulate glucose metabolism. After absorption and processing of dietary glucose within the small intestine, insulin and glucagon are released from pancreatic islet cells to maintain blood glucose homeostasis. Malfunctions affecting either individual, organ-specific functions or the sophisticated interplay of both organs can result in massive complications and pathologic conditions. One of the most serious metabolic diseases of our society is diabetes mellitus (DM) that is hallmarked by a disturbance of blood glucose homeostasis. Type 1 (T1DM) and type 2 (T2DM) are the main forms of the disease and both are characterized by chronic hyperglycemia, a condition that evokes severe comorbidities in the long-term. In the past, several standard treatment options allowed a more or less adequate therapy for diabetic patients. Albeit there is much effort to develop new therapeutic interventions to treat diabetic patients in a more efficient way, no cure is available so far. In view of the urgent need for alternative treatment options, a more systemic look on whole organ systems, their biological relation and complex interplay is needed when developing new therapeutic strategies for DM. T1DM is hallmarked by an autoimmune-mediated destruction of the pancreatic β-cell mass resulting in a complete lack of insulin that is in most patients restored by applying a life-long recombinant insulin therapy. Therefore, novel regenerative medicine-based concepts focus on the derivation of bioartificial β-like cells from diverse stem cell sources in vitro that survive and sustain to secrete insulin after implantation in vivo. In this context, the first part of this thesis analyzed multipotent intestinal stem cells (ISCs) as alternative cell source to derive bioartificial, pancreatic β-like cells in vitro. From a translational perspective, intestinal stem cells pose a particularly attractive cell source since intestinal donor tissues could be obtained via minimal invasive endoscopy in an autologous way. Furthermore, intestinal and pancreatic cells both derive from the same developmental origin, the endodermal gut tube, favoring the differentiation process towards functional β-like cells. In this study, pancreas-specific differentiation of ISCs was induced by the ectopic expression of the pancreatic transcription factor 1 alpha (Ptf1a), a pioneer transcriptional regulator of pancreatic fate. Furthermore, pancreatic lineage-specific culture media were applied to support the differentiation process. In general, ISCs grow in vitro in a 3D Matrigel®-based environment. Therefore, a 2D culture platform for ISCs was established to allow delivery and ectopic expression of Ptf1a with high efficiency. Next, several molecular tools were applied and compared with each other to identify the most suitable technology for Ptf1a delivery and expression within ISCs as well as their survival under the new established 2D conditions. Success of differentiation was investigated by monitoring changes in cellular morphology and induction of pancreatic differentiation-specific gene expression profiles. In summary, the data of this project part suggest that Ptf1a harbors the potential to induce pancreatic differentiation of ISCs when applying an adequate differentiation media. However, gene expression analysis indicated rather an acinar lineage-determination than a pancreatic β-cell-like specification. Nevertheless, this study proved ISCs not only as interesting stem cell source for the generation of pancreatic cell types with a potential use in the treatment of T1DM but alsoPtf1a as pioneer factor for pancreatic differentiation of ISCs in general. Compared to T1DM, T2DM patients suffer from hyperglycemia due to insulin resistance. In T2DM management, the maintenance of blood glucose homeostasis has highest priority and can be achieved by drugs affecting the stabilization of blood glucose levels. Recent therapeutic concepts are aiming at the inhibition of the intestinal glucose transporter Na+-D-Glucose cotransporter 1 (SGLT1). Pharmacological inhibition of SGLT1 results in reduced postprandial blood glucose levels combined with a sustained and increased Glucagon-like peptide 1 (GLP-1) secretion. So far, systemic side effects of this medication have not been addressed in detail. Of note, besides intestinal localization, SGLT1 is also expressed in various other tissues including the pancreas. In context of having a closer look also on the interplay of organs when developing new therapeutic approaches for DM, the second part of this thesis addressed the effects on pancreatic islet integrity after loss of SGLT1. The analyses comprised the investigation of pancreatic islet size, cytomorphology and function by the use of a global SGLT1 knockout (SGLT1-/-) mouse model. As SGLT1-/- mice develop the glucose-galactose malabsorption syndrome when fed a standard laboratory chow, these animals derived a glucose-deficient, fat-enriched (GDFE) diet. Wildtype mice on either standard chow (WTSC) or GDFE (WTDC) allowed the discrimination between diet- and knockout-dependent effects. Notably, GDFE fed mice showed decreased expression and function of intestinal SGLT1, while pancreatic SGLT1 mRNA levels were unaffected. Further, the findings revealed increased isled sizes, reduced proliferation- and apoptosis rates as well as an increased α-cell and reduced β-cell proportion accompanied by a disturbed cytomorphology in islets when SGLT1 function is lost or impaired. In addition, pancreatic islets were dysfunctional in terms of insulin- and glucagon-secretion. Moreover, the release of intestinal GLP-1, an incretin hormone that stimulates insulin-secretion in the islet, was abnormal after glucose stimulatory conditions. In summary, these data show that intestinal SGLT1 expression and function is nutrient dependent. The data obtained from the islet studies revealed an additional and new role of SGLT1 for maintaining pancreatic islet integrity in the context of structural, cytomorphological and functional aspects. With special emphasis on SGLT1 inhibition in diabetic patients, the data of this project indicate an urgent need for analyzing systemic side effects in other relevant organs to prove pharmacological SGLT1 inhibition as beneficial and safe. Altogether, the findings of both project parts of this thesis demonstrate that focusing on the molecular and cellular relationship and interplay of the small intestine and the pancreas could be of high importance in context of developing new therapeutic strategies for future applications in DM patients. N2 - Das komplexe Zusammenspiel zwischen Pankreas und Dünndarm ist von großer Bedeutung für den Zucker Stoffwechsel. Während der Dünndarm Glukose aus der Nahrung absorbiert, sezerniert der Pankreas Insulin und Glukagon für die Regulation des Blutzuckerspiegels. Bereits kleinste Fehlfunktionen in einem der beiden Organe können das fein abgestimmte Zusammenspiel aus der Balance bringen und zu schwerwiegenden Begleiterscheinungen führen. Die bekannteste Krankheit bezüglich eines gestörten Blutzuckerhaushaltes ist Diabetes mellitus (DM). Die wichtigsten Formen sind Typ1 und Typ 2 Diabetes, welche beide durch chronische Hyperglykämie gekennzeichnet sind, einem Zustand der langfristig zu schweren Komplikationen führt. Derzeit ist keine Heilung möglich, jedoch vermindert eine Vielzahl von Medikamenten und Therapien die auftretenden Symptome, was die Lebensqualität der Patienten erheblich verbessert. Für die Entwicklung von neuen Medikamenten und Therapien für DM Patienten, muss der Fokus vermehrt auf die Gesamtheit der Organ-Organ Interaktionen, sowie den entwicklungsbiologischen Ursprung der einzelnen Organe gerichtet werden. Bei Typ 1 Diabetes werden die insulinsekretierende β-Zellen vom Immunsystem zerstört, was zu einem Mangel an Insulin führt. Deshalb ist eine regelmäßige Insulingabe unabdingbar, um eine Hyperglykämie vorzubeugen. Ein vielversprechender Ansatz um fehlendes Insulin zu kompensieren besteht darin aus Stammzellen bioartifizielle, insulinsekretierende Zellen zu generieren. In diesem Zusammenhang ist der biologische Ursprung der zu differenzierenden Zellen von großer Bedeutung. In dieser Arbeit werden daher intestinale Stammzellen (ISZ) als mögliche alternative Zellquelle beschrieben, um insulinsekretierende Zellen zu generieren. Aus medizinischer Sicht eigenen sich ISZ besonders gut für regenerative Therapien, da sie patientenspezifisch durch eine minimal-invasive Endoskopie entnommen werden können. Des Weiteren haben die beiden Organe einen gemeinsamen embryologischen Ursprung, die endodermalen Darmröhre, was die pankreatische Differenzierung begünstigen könnte. Mithilfe der ektopischen Expression des pankreatischen Masterregulators pankreatischer Transkriptionsfaktors 1 alpha (Ptf1a), sollen ISZ in insulinsekretierende β-Zell-ähnliche Zelltypen differenziert werden. Zudem soll ein pankreas-spezifisches Differenzierungsmedium die Effizienz der Differenzierung erhöhen. Da ISZ normalerweise in einer 3D Umgebung kultiviert werden, wurde für diese Arbeit eine 2D Zellkultur etabliert, um eine hocheffiziente genetische Manipulation zur ektopischen Expression von Ptf1a zu garantieren. Im nächsten Schritt wurde die bestmögliche Methode evaluiert um Ptf1a in ISZ zu integrieren, welche gleichzeitig aber das Wachstum und Überleben der Zellen nicht beeinträchtigt. Der Erfolg der angewandten Methode wurde basierend auf der Zellmorphologie, sowie der Transkription von pankreasspezifischen Genen überprüft. Die Ergebnisse dieser Studie haben gezeigt, dass die Ptf1a-induzierte Differenzierung in Verbindung mit der Applikation eines spezifischen Differenzierungsmediums das Genexpressionsprofil von Azinär Zellen induziert und nicht wie erwartet, das von endokrinen β-Zellen. Dies bedeutet, dass Ptf1a die Kapazität aufweist, ISZ in pankreatische Zellen zu konvertieren, jedoch bei der Entwicklung in Richtung insulinsekretierende β-Zellen keine Rolle spielt. Letztendlich zeigen die Ergebnisse dieser Arbeit, dass ISZ eine interessante Alternative zu pluripotenten Stammzellen darstellen. Im Gegensatz zu Typ 1 leiden Typ 2 Diabetes Patienten an Hyperglykämie infolge von Insulinresistenz, welche oft mit blutzuckerregulierenden Medikamenten behandelt werden können. Eine gute Therapiemöglichkeit ist die Inhibition des intestinalen Glukosetransporters SGLT1, was zu einer drastisch reduzierten postprandialen Glukoseaufnahme führt und gleichzeitig die intestinale Sekretion des Inkretins Glukose-like Peptide 1 (GLP-1) erhöht. Beides wirkt sich positiv auf die Blutzuckerregulation unter diabetischen Verhältnissen aus. Obwohl SGLT1 primär im Dünndarm exprimiert ist, wurde dessen Expression auch in anderen Organen, wie dem Gehirn, dem Herz, der Lunge und in pankreatischen α-Zellen nachgewiesen. Im zweiten Teil dieser Arbeit wurde daher der Einfluss des Funktionsverlustes von SGLT1 auf die Integrität pankreatischer Inselzellcluster analysiert. Im diesem Rahmen wurde die Morphologie der pankreatischen Inseln, deren Architektur und Funktion mithilfe eines etablierten murinen SGLT1 Knockout (SGLT1-/-) Modelles untersucht. Da SGLT1-/- Mäuse unter einer Standard Labordiät (SD) ein schweres Glukose-Galaktose Malabsorptions Syndrom entwickeln, erhalten die Tiere eine glukose-freie, fett-angereicherte Diät (GDFE). Um diät- und knockoutspezifische Effekte unterscheiden zu können, wurden als Kontrollen SD- und GDFE-gefütterte Wildtyp Tiere mit den SGLT1-/- Mäusen verglichen. Wildtyptiere unter GDFE Diät zeigten eine verminderte Expression und Funktionalität des intestinalen SGLT1 Transporters, während im Pankreas die SGLT1 mRNA Expression nicht von der Diät beeinflusst wurde. Die Ergebnisse dieser Arbeit haben gezeigt, dass in SGLT1-/- Pankreata, die Inseln größer sind, aber auch die Proliferations- und Apoptoserate in den Inselzellen reduziert ist. Zudem befinden sich in SGLT1-/- Inseln mehr α-Zellen und weniger β-Zellen. Des Weiteren ist die typische Anordnung der endokrinen Zellen gestört. Diese Beobachtungen deuten darauf hin, dass SGLT1 in pankreatischen Inseln eine wichtige Rolle für die strukturelle Organisation der verschiedenen Zelltypen innerhalb der Inseln spielt. Ergänzend wurde gezeigt, dass isolierte SGLT1-/- Inseln in der Gegenwart von Glukose unfähig sind Insulin oder Glukagon zu sezernieren. Weitere Untersuchungen im Tier haben ergeben, dass auch das insulinsekretionsfördernde Hormon GLP-1 in atypischer Art und Weise sekretiert wird. In dieser Arbeit wurde gezeigt, dass die intestinale SGLT1 Expression und Funktion durch Nährstoffe beeinflusst werden kann. Des Weiteren wurde erstmals eine neue Funktion für SGLT1 bezüglich der strukturellen und zellulären Organisation pankreatischer Inselzellcluster beschrieben. Daten zu neuen klinischen SGLT1 Inhibitoren beschreiben lediglich eine intestinale SGLT1 Blockierung, während die Wirkung in weitern Organen nicht berücksichtigt wurde. Die Daten dieser Arbeit liefern klare Indizien dafür, dass starke Nebenwirkungen und Effekte auch in anderen SGLT1-exprimierenden Geweben und Organen auftreten könnten, wenn die SGLT1 Funktion verloren geht. Zusammenfassend konnte in dieser Arbeit gezeigt werden, dass die Regulation des Blutzuckerspiegels auf einem komplexen Zusammenspiel zwischen Dünndarm und Pankreas basiert. Daher sollten bei zukünftigen SGLT1 Inhibitions-Studien im Menschen die Interaktionen zwischen den beiden Organen unbedingt berücksichtigt werden, um die Wirksamkeit und die Sicherheit solcher Medikamente für Diabetes Patienten besser darzulegen. KW - Stammzelle KW - Diabetes mellitus KW - Sglt1 KW - GLP-1 KW - blood glucose regulation KW - Intestinal stem cell KW - Lgr5 KW - islets of Langerhans KW - pancreas KW - glucose KW - insulin Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169266 ER - TY - JOUR A1 - Schäfer, Nadine A1 - Friedrich, Maximilian A1 - Jørgensen, Morten Egevang A1 - Kollert, Sina A1 - Koepsell, Hermann A1 - Wischmeyer, Erhard A1 - Lesch, Klaus-Peter A1 - Geiger, Dietmar A1 - Döring, Frank T1 - Functional analysis of a triplet deletion in the gene encoding the sodium glucose transporter 3, a potential risk factor for ADHD JF - PLoS ONE N2 - Sodium-glucose transporters (SGLT) belong to the solute carrier 5 family, which is characterized by sodium dependent transport of sugars and other solutes. In contrast, the human SGLT3 (hSGLT3) isoform, encoded by SLC5A4, acts as a glucose sensor that does not transport sugar but induces membrane depolarization by Na\(^{+}\) currents upon ligand binding. Whole-exome sequencing (WES) of several extended pedigrees with high density of attention-deficit/hyperactivity disorder (ADHD) identified a triplet ATG deletion in SLC5A4 leading to a single amino acid loss (ΔM500) in the hSGLT3 protein imperfectly co-segregating with the clinical phenotype of ADHD. Since mutations in homologous domains of hSGLT1 and hSGLT2 were found to affect intestinal and renal function, respectively, we analyzed the functional properties of hSGLT3[wt] and [ΔM500] by voltage clamp and current clamp recordings from cRNA-injected Xenopus laevis oocytes. The cation conductance of hSGLT3[wt] was activated by application of glucose or the specific agonist 1-desoxynojirimycin (DNJ) as revealed by inward currents in the voltage clamp configuration and cell depolarization in the current clamp mode. Almost no currents and changes in membrane potential were observed when glucose or DNJ were applied to hSGLT3[ΔM500]-injected oocytes, demonstrating a loss of function by this amino acid deletion in hSGLT3. To monitor membrane targeting of wt and mutant hSGLT3, fusion constructs with YFP were generated, heterologously expressed in Xenopus laevis oocytes and analyzed for membrane fluorescence by confocal microscopy. In comparison to hSGLT3[wt] the fluorescent signal of mutant [ΔM500] was reduced by 43% indicating that the mutant phenotype might mainly result from inaccurate membrane targeting. As revealed by homology modeling, residue M500 is located in TM11 suggesting that in addition to the core structure (TM1-TM10) of the transporter, the surrounding TMs are equally crucial for transport/sensor function. In conclusion, our findings indicate that the deletion [ΔM500] in hSGLT3 inhibits membrane targeting and thus largely disrupts glucose-induced sodium conductance, which may, in interaction with other ADHD risk-related gene variants, influence the risk for ADHD in deletion carriers. KW - Xenopus laevis oocytes KW - ADHD KW - glucose KW - cell membranes KW - membrane proteins KW - membrane potential KW - crystal structure KW - amino acid analysis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176495 VL - 13 IS - 10 ER -