TY - THES A1 - Schaper, Philipp T1 - Errors in Prospective Memory T1 - Fehler im Prospektiven Gedächtnis N2 - Prospektives Gedächtnis beschreibt die Fähigkeit Intentionen zu einem späteren Zeitpunkt als Reaktion auf einen Hinweisreiz auszuführen. Derartige Aufgaben finden sich zahlreich in Alltags- wie auch Arbeitskontexten, waren aber im Gegensatz zum retrospektiven Gedächtnis lange Zeit nicht im Fokus der Forschung. Erst die Arbeit von Harris (1984) und insbesondere der Artikel von Einstein and McDaniel (1990) wurden Ausgangspunkte eines sich stetig vergrößernden Forschungsfeldes. Aufbauend auf dieser Forschung werden im Rahmen dieser Dissertationsschrift fünf Journal-Artikel präsentiert und verknüpft, die das Verständnis zum prospektiven Gedächtnis durch die Betrachtung von möglichen Fehlern erweitern. Die erste Studie beschäftigt sich mit der Frage ob zusätzliche kognitiven Ressourcen benötigt werden um eine Intention zwischen dem Hinweisreiz und ihrer Ausführung aufrecht zu erhalten. Die Folgerungen von Einstein, McDaniel, Williford, Pagan, and Dismukes (2003), die eine derartige Aufrechterhaltung vorschlugen konnten nicht repliziert werden. In der zweiten Studie konnte gezeigt werden, dass Unterbrechungen zwischen Hinweisreiz und Ausführung der Intention insbesondere dann negative Folgen zeigen, wenn sie mit einem Kontextwechsel verbunden sind. In den Studien drei bis fünf stand das irrtümliche Ausführen von beendeten prospektiven Gedächtnisaufgaben im Zentrum der Untersuchung. Hier konnte nicht nur gezeigt werden, dass die bisherige Theorie zur Vorhersage derartiger Fehler, die vor allem auf Unterdrückung der Reaktion beruht (Bugg, Scullin, & Rauvola, 2016), mit den Ergebnissen speziell zu deren Prüfung entworfener Experimente nicht zu vereinbaren ist. Darüber hinaus wurde im Rahmen der Untersuchungen eine Modifikation der Theorie ausgearbeitet, die besser geeignet erscheint sowohl bisherige Ergebnisse als auch die hinzugekommenen Experimente vorherzusagen. Über alle fünf Artikel wird zusätzlich verdeutlicht, dass der Moment in dem der Hinweisreiz präsentiert wird eine noch größere Rolle zu spielen scheint, als durch bisherige Forschung deutlich geworden ist. N2 - Prospective memory is the ability to implement intentions at a later point in time in response to a specified cue. Such prospective memory tasks often occur in daily living and workplace situations. However, in contrast to retrospective memory there has been relatively little research on prospective memory. The studies by Harris (1984) and Einstein and MacDaniel (1990) served as a starting point for a now steadily growing area of research. Based on this emerging field of study this dissertation presents and connects and five journal articles, which further explore prospective memory by focusing on its potential errors. The first article addresses the question if additional cognitive resources are needed after a prospective memory cue occurs to keep the intention active until it is implemented. The theory by Einstein, McDaniel, Williford, Pagan and Dismukes (2003), which suggested this active maintenance, could not be replicated. The second article demonstrated that interruptions between cue and the window of opportunity to implement the intention reduce prospective memory performance, especially if the interruption is tied with a change of context. Article three to five were focused on the erroneous implementation of a no longer active prospective memory task, so called commission errors. The suggested mechanism for their occurrence, the dual-mechanism account (Bugg, Scullin, & Rauvola, 2016), was not suited to explain the present results. A modification for the dual-mechanism account was formulated, which can account for prior work, as well as for the present data. The results of all five articles also indicate that the moment of cue retrieval is even more relevant for prospective memory and its errors than previously accounted for. KW - Gedächtnis KW - Prospektives Gedächtnis KW - prospective memory KW - commission error Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175217 ER - TY - THES A1 - Lyutova, Radostina T1 - Functional dissection of recurrent feedback signaling within the mushroom body network of the Drosophila larva T1 - Funktionelle Analyse einer Rückkopplungsschleife innerhalb der Pilzkörper von Drosophila Larven N2 - Behavioral adaptation to environmental changes is crucial for animals’ survival. The prediction of the outcome of one owns action, like finding reward or avoiding punishment, requires recollection of past experiences and comparison with current situation, and adjustment of behavioral responses. The process of memory acquisition is called learning, and the Drosophila larva came up to be an excellent model organism for studying the neural mechanisms of memory formation. In Drosophila, associative memories are formed, stored and expressed in the mushroom bodies. In the last years, great progress has been made in uncovering the anatomical architecture of these brain structures, however there is still a lack of knowledge about the functional connectivity. Dopamine plays essential roles in learning processes, as dopaminergic neurons mediate information about the presence of rewarding and punishing stimuli to the mushroom bodies. In the following work, the function of a newly identified anatomical connection from the mushroom bodies to rewarding dopaminergic neurons was dissected. A recurrent feedback signaling within the neuronal network was analyzed by simultaneous genetic manipulation of the mushroom body Kenyon cells and dopaminergic neurons from the primary protocerebral anterior (pPAM) cluster, and learning assays were performed in order to unravel the impact of the Kenyon cells-to-pPAM neurons feedback loop on larval memory formation. In a substitution learning assay, simultaneous odor exposure paired with optogenetic activation of Kenyon cells in fruit fly larvae in absence of a rewarding stimulus resulted in formation of an appetitive memory, whereas no learning behavior was observed when pPAM neurons were ablated in addition to the KC activation. I argue that the activation of Kenyon cells may induce an internal signal that mimics reward exposure by feedback activation of the rewarding dopaminergic neurons. My data further suggests that the Kenyon cells-to-pPAM communication relies on peptidergic signaling via short neuropeptide F and underlies memory stabilization. N2 - Eine Anpassung des eigenen Verhaltens an Veränderungen der Umwelt ist unerlässlich für das Überleben der Tiere. Vorhersage über die Konsequenzen der eigenen Handlungen, z.B. belohnt oder bestraft zu werden, erfordert den Vergleich von gemachten Erfahrungen und der aktuellen Situation. Eine solche Vorhersage kann zu einer Verhaltensanpassung führen. Der Prozess der Gedächtnisbildung ist auch bekannt als Lernen. Als hervorragender Modellorganismus zum Erforschen der Lernverhaltensmechanismen hat sich die Drosophila Larve etabliert. In Drosophila werden olfaktorische Gedächtnisse in einer bilateralen Struktur des Protozerebrums gespeichert, den Pilzkörpern. In den letzten Jahren sind erhebliche Fortschritte in der Beschreibung der anatomischen Strukturen der Pilzkörper gemacht worden. Allerdings ist die funktionelle Konnektivität dieser Gehirnstrukturen noch unzureichend verstanden. Dopamin spielt eine essentielle Rolle in Lernprozessen. Dopaminerge Neurone vermitteln Informationen über das Vorliegen belohnender oder bestrafender Stimuli. Die Funktion einer vor kurzem beschriebenen anatomischen Verbindung von den Pilzkörpern zu belohnenden dopaminergen pPAM Neuronen wurde in der folgenden Arbeit untersucht, und der rückläufige Signalweg innerhalb des neuronalen Netzwerks wurde mittels simultaner genetischer Manipulation der Pilzkörperneurone, die sog. Kenyon Zellen, und der pPAM Neuronen analysiert. Der Einfluss der Rückkopplungsschleife zwischen Kenyon Zellen und pPAM Neuronen auf das larvale Verhalten wurde durch verschiedene Verhaltensexperimente getestet. In dieser Arbeit wurden Drosophila Larven darauf trainiert, einen Duft mit optogenetischer Aktivierung der Pilzkörper Neurone zu assoziieren. Dabei konnte die Ausbildung eines positiven Gedächtnisses in Abwesenheit einer physischen Belohnung beobachtet werden. Wurden aber zusätzlich die dopaminergen Neurone des pPAM Clusters ablatiert, so zeigten die Larven keine Expression des Gedächtnisses mehr. Meine Daten zeigten, dass die Aktivierung der Kenyon Zellen in einer Aktivierung der dopaminergen Neurone über der Rückkopplungsschleife resultiert, und dementsprechend einen internen Belohnungssignalweg einleitet. Dadurch wird das Vorhandensein einer „echten“ Belohnung nachgeahmt. Es konnte weiterhin gezeigt werden, dass die Rückkopplung von den Kenyon Zellen zu den pPAM Neurone von peptiderger Natur ist. Die Kenyon Zellen exprimieren das Neuropeptid short neuropeptide F, das an Rezeptoren in den pPAM Neurone bindet und das Lernverhalten beeinflusst. Darüber hinaus konnte gezeigt werden, dass die Aktivierung der Rückkopplungsschleife eine Auswirkung auf die Stabilität des positiven Gedächtnisses in Richtung nachhaltiger Erinnerungen hat. KW - Lernen KW - Lernverhalten KW - Gedächtnis KW - Dopamin KW - Drosophila KW - learning KW - memory KW - Drosophila KW - dopamine KW - short neuropeptide F Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187281 ER - TY - THES A1 - Engelhardt [geb. Christiansen], Frauke T1 - Synaptic Connectivity in the Mushroom Body Calyx of Drosophila melanogaster T1 - Synaptische Konnektivität im Pilzkörper Kalyx in Drosophila melanogaster N2 - Learning and memory is considered to require synaptic plasticity at presynaptic specializations of neurons. Kenyon cells are the intrinsic neurons of the primary olfactory learning center in the brain of arthropods – the mushroom body neuropils. An olfactory mushroom body memory trace is supposed to be located at the presynapses of Kenyon cells. In the calyx, a sub-compartment of the mushroom bodies, Kenyon cell dendrites receive olfactory input provided via projection neurons. Their output synapses, however, were thought to reside exclusively along their axonal projections outside the calyx, in the mushroom body lobes. By means of high-resolution imaging and with novel transgenic tools, we showed that the calyx of the fruit fly Drosophila melanogaster also comprised Kenyon cell presynapses. At these presynapses, synaptic vesicles were present, which were capable of neurotransmitter release upon stimulation. In addition, the newly identified Kenyon cell presynapses shared similarities with most other presynapses: their active zones, the sites of vesicle fusion, contained the proteins Bruchpilot and Syd-1. These proteins are part of the cytomatrix at the active zone, a scaffold controlling synaptic vesicle endo- and exocytosis. Kenyon cell presynapses were present in γ- and α/β-type KCs but not in α/β-type Kenyon cells. The newly identified Kenyon cell derived presynapses in the calyx are candidate sites for an olfactory associative memory trace. We hypothesize that, as in mammals, recurrent neuronal activity might operate for memory retrieval in the fly olfactory system. Moreover, we present evidence for structural synaptic plasticity in the mushroom body calyx. This is the first demonstration of synaptic plasticity in the central nervous system of Drosophila melanogaster. The volume of the mushroom body calyx can change according to changes in the environment. Also size and numbers of microglomeruli - sub-structures of the calyx, at which projection neurons contact Kenyon cells – can change. We investigated the synapses within the microglomeruli in detail by using new transgenic tools for visualizing presynaptic active zones and postsynaptic densities. Here, we could show, by disruption of the projection neuron - Kenyon cell circuit, that synapses of microglomeruli were subject to activity-dependent synaptic plasticity. Projection neurons that could not generate action potentials compensated their functional limitation by increasing the number of active zones per microglomerulus. Moreover, they built more and enlarged microglomeruli. Our data provide clear evidence for an activity-induced, structural synaptic plasticity as well as for the activity-induced reorganization of the olfactory circuitry in the mushroom body calyx. N2 - Synaptische Plastizität an den präsynaptischen Spezialisierungen von Neuronen sind nach allgemeinem Verständnis die Grundlage für Lern- und Gedächtnisprozesse. Kenyon Zellen sind die intrinsischen Zellen des Zentrums für olfaktorisches Lernen im Gehirn von Arthropoden – den Pilzkörper Neuropilen. An den Präsynapsen der Kenyon Zellen wird eine olfaktorische Gedächtnisspur vermutet. Im Kalyx, einer Substruktur der Pilzkörper, erhalten die Kenyon Zell Dendriten ihren olfaktorischen Input durch Projektionsneurone. Ihre Präsynapsen wiederum befinden sich ausschließlich in ihren axonalen Kompartimenten außerhalb des Kalyx, nämlich in den Loben der Pilzkörper. Mit Hilfe von hochauflösenden bildgebenden Techniken und neuen transgenen Methoden, ist es uns in der Fruchtfliege Drosophila melanogaster gelungen, Kenyon Zell Präsynapsen im Kalyx zu identifizieren. Diese Präsynapsen enthalten synaptische Vesikel, die nach Stimulation ihren Inhalt freisetzen können. Sie weisen noch weitere Gemeinsamkeiten mit den meisten anderen Präsynapsen auf: Ihre Aktiven Zonen, die Orte der Transmitterfreisetzung, enthalten die Proteine Bruchpilot und Syd-1. Diese sind Teil der Zytomatrix an der Aktiven Zone, ein Proteingerüst das Endo- und Exozytose der synaptischen Vesikel kontrolliert. Die Präsynapsen im Kalyx wurden in γ- and α/β-Typ Kenyon Zellen aber nicht in α/β-Typ Kenyon Zellen gefunden. Die neu identifizierten Kenyon Zell Präsynapsen beherbergen potentiell eine Gedächtnisspur für olfaktorisch assoziatives Lernen. Möglicherweise wird im olfaktorischen Nervensystem von Fruchtfliegen rücklaufende neuronale Aktivität benötigt, um Gedächtnis abzurufen, so wie es auch für Säuger beschrieben ist. Darüber hinaus zeigen wir synaptische Plastizität im Kalyx. Dies ist die erste Beschreibung überhaupt von synaptischer Plastizität im zentralen Nervensystem von Drosophila melanogaster. Das Volumen des Kalyx kann sich als Antwort auf äußere Einflüsse verändern. Genauso auch Größe und Anzahl der Mikroglomeruli, Substrukturen des Kalyx, in denen Projektionsneurone und Kenyon Zellen aufeinander treffen. Wir untersuchten die Synapsen in Mikroglomeruli detailliert, mithilfe von neuen transgenen Methoden, die es erlauben, präsynaptische Aktive Zonen sowie Postsynaptische Spezialisierungen zu visualisieren. Mittels Beeinträchtigung der Kommunikation zwischen Projektionsneuronen und Kenyon Zellen, konnten wir synaptische Plastizität in Mikroglomeruli zeigen. Projektionsneurone, die nicht in der Lage waren, Aktionspotentiale zu erzeugen, kompensierten ihre funktionelle Einschränkung durch den vermehrten Einbau von Aktiven Zonen in Mikroglomeruli. Außerdem produzierten sie mehr und vergrößerte Mikroglomeruli. Unsere Daten zeigen deutlich eine aktivitätsinduzierte Veränderung des olfaktorischen neuronalen Netzes, sowie strukturelle synaptische Plastizität im Kalyx. KW - Taufliege KW - Pilzkörper KW - Drosophila melanogaster KW - mushroom body KW - calyx KW - Geruch KW - Lernen KW - Gedächtnis KW - Kalyx Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85058 ER - TY - THES A1 - Schleyer, Michael T1 - Integrating past, present and future: mechanisms of a simple decision in larval Drosophila T1 - Vergangenheit, Gegenwart und Zukunft: Mechanismen einer einfachen Entscheidung von Drosophila-Larven N2 - Is behaviour response or action? In this Thesis I study this question regarding a rather simple organism, the larva of the fruit fly Drosophila melanogaster. Despite its numerically simple brain and limited behavioural repertoire, it is nevertheless capable to accomplish surprisingly complex tasks. After association of an odour and a rewarding or punishing reinforcement signal, the learnt odour is able to retrieve the formed memory trace. However, the activated memory trace is not automatically turned into learned behaviour: Appetitive memory traces are behaviourally expressed only in absence of the rewarding tastant whereas aversive memory traces are behaviourally expressed in the presence of the punishing tastant. The ‘decision’ whether to behaviourally express a memory trace or not relies on a quantitive comparison between memory trace and current situation: only if the memory trace (after odour-sugar training) predicts a stronger sugar reward than currently present, animals show appetitive conditioned behaviour. Learned appetitive behaviour is best seen as active search for food – being pointless in the presence of (enough) food. Learned aversive behaviour, in turn, can be seen as escape from a punishment – being pointless in absence of punishment. Importantly, appetitive and aversive memory traces can be formed and retrieved independent from each other but also can, under appriate circumstances, summate to jointly organise conditioned behaviour. In contrast to learned behaviour, innate olfactory behaviour is not influenced by gustatory processing and vice versa. Thus, innate olfactory and gustatory behaviour is rather rigid and reflexive in nature, being executed almost regardless of other environmental cues. I suggest a behavioural circuit-model of chemosensory behaviour and the ‘decision’ process whether to behaviourally express a memory trace or not. This model reflects known components of the larval chemobehavioural circuit and provides clear hypotheses about the kinds of architecture to look for in the currently unknown parts of this circuit. The second chapter deals with gustatory perception and processing (especially of bitter substances). Quinine, the bitter tastant in tonic water and bitter lemon, is aversive for larvae, suppresses feeding behaviour and can act as aversive reinforcer in learning experiments. However, all three examined behaviours differ in their dose-effect dynamics, suggesting different molecular and cellular processing streams at some level. Innate choice behaviour, thought to be relatively reflexive and hard-wired, nevertheless can be influenced by the gustatory context. That is, attraction toward sweet tastants is decreased in presence of bitter tastants. The extent of this inhibitory effect depends on the concentration of both sweet and bitter tastant. Importantly, sweet tastants differ in their sensitivity to bitter interference, indicating a stimulus-specific mechanism. The molecular and cellular processes underlying the inhibitory effect of bitter tastants are unknown, but the behavioural results presented here provide a framework to further investigate interactions of gustatory processing streams. N2 - Ist Verhalten Aktion oder Reaktion? In dieser Arbeit widme ich mich dieser Frage anhand eines recht einfachen Organismus, der Larve der Taufliege Drosophila melanogaster. Trotz ihres nur aus wenigen Tausend Nervenzellen bestehenden Gehirns und begrenzten Verhaltensrepertoires ist sie dennoch zu überraschend komplexem Verhalten fähig. Nach der Assoziation eines Duftes mit einem belohnenden oder bestrafenden Geschmacksstoff ist der gelernte Duft in der Lage, die gebildete Gedächtnisspur abzurufen. Diese aktivierte Gedächtnisspur wird jedoch nicht automatisch in Verhalten übersetzt: Appetitive Gedächtnisspuren führen nur in Abwesenheit des belohnenden Geschmacks zu erlerntem Verhalten, während aversive Gedächtnisspuren nur in Anwesenheit des bestrafenden Geschmacks in erlerntem Verhalten münden. Die „Entscheidung“, eine Gedächtnisspur in Verhalten zu übersetzen oder nicht, beruht auf einem quantitativen Vergleich zwischen der Gedächtnisspur und der aktuellen Situation: Nur wenn die Gedächtnisspur (nach einem Duft-Zucker-Training) eine größere Zuckerbelohnung vorhersagt als gegewärtig vorhanden, zeigen die Tiere appetitives erlerntes Verhalten. Solches Verhalten kann man am besten als aktive Suche nach Nahrung interpretieren, die in Gegenwart von (ausreichend) Nahrung sinnlos ist. Aversives erlerntes Verhalten andererseits kann als Flucht vor einer Bestrafung verstanden werden – und in Abwesenheit einer Bestrafung gibt es nichts, wovor man fliehen könnte. Appetitive und aversive Gedächtnisspuren können unabhängig voneinander gebildet und abgerufen werden, können unter den richtigen Umständen aber auch gemeinsam erlerntes Verhalten organisieren. Im Gegensatz zu erlerntem Verhalten wird angeborenes olfaktorisches Verhalten nicht durch das Geschmackssystem beinflusst – und umgekehrt. Angeborenes Verhalten erscheint also relativ starr und reflexhaft und läuft größtenteils unbeeinflusst von anderen Umwelteinflüssen ab. Schließlich entwerfe ich ein auf Verhalten basierendes Schaltkreismodell des chemosensorischen Systems der Larve und der „Entscheidung“, eine Gedächtnisspur in Verhalten umzusetzen oder nicht. Dieses Modell stellt bekannte Komponenten des Systems dar und macht klare Vorhersagen über die Architektur, die bisher noch unbekannte Komponenten haben sollten. Das zweite Kapitel der Arbeit behandelt die Wahrnehmung und Verarbeitung von (hauptsächlich bitteren) Geschmacksstoffen. Chinin, der bittere Geschmack in Getränken wie Bitter Lemon, wirkt abstoßend auf Larven, unterdrückt ihr Fressverhalten und kann in Lernexperimenten als Bestrafung wirken. Allerdings unterscheiden sich alle drei untersuchten Verhalten in der Dynamik ihrer Dosis-Wirkungskurven, was unterschiedliche molekulare und zelluläre Wirkungsweisen nahe legt. Angeborenes Wahlverhalten, das als reflexhaft und starr gilt, kann dennoch durch den gustatorischen Kontext beeinflusst werden. Das bedeutet, die Anwesenheit eines Bitterstoffes ist in der Lage, die angeborene Präferenz von Larven für süße Geschmackstoffen zu unterdrücken. Dieser inhibitorische Effekt hängt sowohl von der Konzentration der süßen als auch der bitteren Substanz ab. Was noch wichtiger ist: Die verschiedenen Zucker sind unterschiedlich anfällig für die Störung durch Bitterstoffe, was auf einen Stimulus-spezifischen Mechanismus hindeutet. Die genauen molekularen und zellulären Prozesse, die diesem inhibitorischen Effekt von Bitterstofen zugrunde liegen, sind noch nicht bekannt, die hier präsentierten Ergebnisse bieten aber einen geeigneten Rahmen für weitergehende Untersuchungen der Interaktionen zwischen verschiedenen Teilen des Geschmacksapparates. KW - Lernen KW - Taufliege KW - Geschmackssinn KW - Geruchssinn KW - Sinnesphysiologie KW - Learning KW - Memory KW - Drosophila KW - Decision-making KW - Olfactory KW - Entscheidung KW - Synapse KW - Gedächtnis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78923 ER - TY - THES A1 - Kapustjansky, Alexander T1 - In vivo imaging and optogenetic approach to study the formation of olfactory memory and locomotor behaviour in Drosophila melanogaster T1 - In vivo Imaging und der optogenetische Ansatz zu Untersuchung der Gedächtnissbildung und lokomotorischem Verhalten bei Drosophila melanogaster N2 - Understanding of complex interactions and events in a nervous system, leading from the molecular level up to certain behavioural patterns calls for interdisciplinary interactions of various research areas. The goal of the presented work is to achieve such an interdisciplinary approach to study and manipulate animal behaviour and its underlying mechanisms. Optical in vivo imaging is a new constantly evolving method, allowing one to study not only the local but also wide reaching activity in the nervous system. Due to ease of its genetic accessibility Drosophila melanogaster represents an extraordinary experimental organism to utilize not only imaging but also various optogenetic techniques to study the neuronal underpinnings of behaviour. In this study four genetically encoded sensors were used to investigate the temporal dynamics of cAMP concentration changes in the horizontal lobes of the mushroom body, a brain area important for learning and memory, in response to various physiological and pharmacological stimuli. Several transgenic lines with various genomic insertion sites for the sensor constructs Epac1, Epac2, Epac2K390E and HCN2 were screened for the best signal quality, one line was selected for further experiments. The in vivo functionality of the sensor was assessed via pharmacological application of 8-bromo-cAMP as well as Forskolin, a substance stimulating cAMP producing adenylyl cyclases. This was followed by recording of the cAMP dynamics in response to the application of dopamine and octopamine, as well as to the presentation of electric shock, odorants or a simulated olfactory signal, induced by acetylcholine application to the observed brain area. In addition the interaction between the shock and the simulated olfactory signal by simultaneous presentation of both stimuli was studied. Preliminary results are supporting a coincidence detection mechanism at the level of the adenylyl cyclase as postulated by the present model for classical olfactory conditioning. In a second series of experiments an effort was made to selecticvely activate a subset of neurons via the optogenetic tool Channelrhodopsin (ChR2). This was achieved by recording the behaviour of the fly in a walking ball paradigm. A new method was developed to analyse the walking behaviour of the animal whose brain was made optically accessible via a dissection technique, as used for imaging, thus allowing one to target selected brain areas. Using the Gal4-UAS system the protocerebral bridge, a substructure of the central complex, was highlighted by expressing the ChR2 tagged by fluorescent protein EYFP. First behavioural recordings of such specially prepared animals were made. Lastly a new experimental paradigm for single animal conditioning was developed (Shock Box). Its design is based on the established Heat Box paradigm, however in addition to spatial and operant conditioning available in the Heat Box, the design of the new paradigm allows one to set up experiments to study classical and semioperant olfactory conditioning, as well as semioperant place learning and operant no idleness experiments. First experiments involving place learning were successfully performed in the new apparatus. N2 - Das Verständniss für die komplexen Interaktionen und Zusammenhänge, die von der molekularen Ebene bis zum Auftreten von bestimmten Verhaltensmustern führen, erfordert die interdisziplinäre Zusammenarbeit unterschiedlicher Forschungsrichtungen. Das Ziel der vorgelegten Arbeit war es einen solchen interdisziplinären Ansatz für die Erforschung und die Manipulation von Verhalten und ihm zu Grunde liegenden Mechanismen zu verwirklichen. Optisches in vivo Imaging ist eine neue, sich ständig weiterentwickelnde Methode, welche es ermöglicht, nicht nur lokale sondern auch weitläufige Aktivitäten innerhalb des Nervensystem zu untersuchen. Drosophila melanogaster stellt aufgrund der leichten genetischen Zugänglichkeit einen herausragenden experimentellen Organismus dar, bei welchem neben optischem Imaging eine ganze Reihe optogenetischer Methoden angewandt werden kann, um die neuronalen Grundlagen des Verhaltens zu erforschen. Im Rahmen dieser Arbeit wurde mit Hilfe von vier genetisch kodierten Sensoren in vivo die Dynamik der cAMP Konzentration in den horizontalen Loben des Pilzkörpers, bei Applikation unterschiedlicher physiologischer und pharmazeutischer Stimuli untersucht. Dabei wurden mehrere transgene Fliegenlinien mit Sensorkonstrukten Epac1, Epac2, Epac2K390E und HCN2 an unterschiedlichen genomischen Insertionsorten, hinsichtlich ihrer Signalqualität untersucht, eine der Linien wurde für weitere Experimente ausgewählt. Zunächst wurde an dieser die in vivo Tauglichkeit des Sensors gezeigt, indem die Konzentration von cAMP durch pharmakologische Applikationen von 8-Bromo-cAMP und Forskolin, einer Substanz welche die Aktivität von cAMP produzierenden Adenylatcyclasen stimuliert, appliziert wurden. Anschließend wurde eine Untersuchung der cAMP Dynamik als Antwort auf einen elektrischen Schock, unterschiedliche Düfte, sowie einen durch Applikation von Acetylcholin simulierten Duftstimulus durchgeführt. Vorläufige Ergebnisse bestärken das aktuelle Modell der klassischen olfaktorischen Konditionierung durch die Koinzidenzdetektion auf der Ebene der Adenylatcyclase. In einem weiteren Experiment wurde der Versuch einer optogenetischen neuronalen Aktivierung unternommen, dabei wurde basierend auf einem Laufball Paradigma eine Methode entwickelt, das Laufverhalten der Fliegen zu analysieren während ihr Gehirn durch eine Imaging-Präparation freigelegt wurde, um gezielt bestimmte durch fluoreszierende Proteine markierte Gehirnbereiche anzuregen. Erste Aufzeichnungen des Laufverhaltens bei Aktivierung der protocerebrallen Brücke, einer Substruktur des Zentralkomplexes, wurden durchgeführt. Schließlich wurde eine neue Apparatur (Shock Box) für die Konditionierung von Einzeltieren entwickelt und gebaut, das Design beruht auf dem der sogenannten Heat Box, ermöglicht jedoch klassische und semioperante olfaktorische Konditionierung zusätzlich zu der in der Heat Box möglichen räumlichen und operanten Konditionierung. Die ersten Versuche für räumliches Lernen wurden in der Apparatur durchgeführt. KW - Taufliege KW - Pilzkörper KW - Cyclo-AMP KW - Gedächtnis KW - In vivo KW - Imaging KW - Drosophila KW - Memory KW - In vivo KW - Imaging KW - Drosophila KW - Memory Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69535 ER - TY - THES A1 - Pahl, Mario T1 - Honeybee Cognition: Aspects of Learning, Memory and Navigation in a Social Insect T1 - Kognition bei Honigbienen: Aspekte zu Lernverhalten, Gedächtnis und Navigation bei einem sozialen Insekt N2 - Honeybees (Apis mellifera) forage on a great variety of plant species, navigate over large distances to crucial resources, and return to communicate the locations of food sources and potential new nest sites to nest mates using a symbolic dance language. In order to achieve this, honeybees have evolved a rich repertoire of adaptive behaviours, some of which were earlier believed to be restricted to vertebrates. In this thesis, I explore the mechanisms involved in honeybee learning, memory, numerical competence and navigation. The findings acquired in this thesis show that honeybees are not the simple reflex automats they were once believed to be. The level of sophistication I found in the bees’ memory, their learning ability, their time sense, their numerical competence and their navigational abilities are surprisingly similar to the results obtained in comparable experiments with vertebrates. Thus, we should reconsider the notion that a bigger brain automatically indicates higher intelligence. N2 - Honigbienen (Apis mellifera) furagieren an vielen verschiedenen Pflanzenarten, und navigieren über große Distanzen zu wichtigen Ressourcen. Die räumliche Lage von Futterquellen und potentiellen neuen Nistplätzen teilen sie ihren Nestgenossinnen mithilfe einer symbolischen Tanzsprache mit. Um all dies leisten zu können, haben sie ein reiches Repertoire von adaptiven Verhaltensweisen evolviert. Mehr und mehr Verhaltensweisen, die man nur bei Vertebraten vermutet hätte, werden auch bei der Honigbiene entdeckt. In meiner Dissertation habe ich einige der Mechanismen erforscht, die beim Lernverhalten, der Gedächtnisbildung, der numerischen Kompetenz und der Navigation eine wichtige Rolle spielen. Die Ergebnisse, die in meiner Dissertation erzielt wurden, zeigen dass Honigbienen keineswegs die einfachen, reflexgesteuerten Organismen sind, als die sie lange Zeit angesehen wurden. Die Komplexität die ich im Gedächtnis, der Lernfähigkeit, dem Zeitsinn, der numerischen Kompetenz und der Navigationsfähigkeit der Bienen gefunden habe, ist erstaunlich ähnlich zu den Ergebnissen, die in vergleichbaren Experimenten mit Vertebraten erzielt wurden. Deshalb sollten wir die allgemeine Annahme, dass ein größeres Gehirn automatisch höhere Intelligenz bedeutet, überdenken. KW - Biene KW - Visuelles Gedächtnis KW - Räumliches Gedächtnis KW - Assoziatives Gedächtnis KW - Navigation KW - Zählen KW - Kognitives Lernen KW - Kognition KW - Honigbiene KW - Gedächtnis KW - Zählen KW - Honeybee KW - Memory KW - Counting KW - Subitizing KW - Cognition Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66165 ER - TY - THES A1 - Gruber, Franz Andreas T1 - Untersuchung zur Regulation der Expression des zuckerkonditionierten Verhaltens bei Drosophila melanogaster T1 - Analysing the regulation of the expression of sugar-conditioned behaviour in Drosophila melanogaster N2 - In dieser Doktorarbeit habe ich die Regulation der Expression des zuckerbelohnten Verhaltens durch den Fütterungszustand bei Drosophila melanogaster untersucht. Die Fliegen können während einer Trainingsphase mit Hilfe einer Zuckerbelohnung auf einen bestimmten Duft konditioniert werden. Nach dem Training können die Fliegen dann auf das olfaktorische Gedächtnis getestet werden. Die Bereitschaft das zuckerkonditionierte Gedächtnis im Test zu zeigen wird vom Fütterungszustand kontrolliert, wie ich in Übereinstimmung mit den Ergebnissen früherer Arbeiten demonstrierte (Tempel et al. 1983; Gruber 2006; Krashes et al. 2008). Nur nicht gefütterte Fliegen exprimieren das Gedächtnis, während Fütterungen bis kurz vor dem Test eine reversibel supprimierende Wirkung haben. Einen ähnlichen regulatorischen Einfluss übt der Futterentzug auch auf die Expression anderer futterbezogener Verhaltensweisen, wie z.B. die naive Zuckerpräferenz, aus. Nachdem ich den drastischen Einfluss des Fütterungszustands auf die Ausprägung des zuckerkonditionierten Verhaltens gezeigt bzw. bestätigt hatte, habe ich nach verhaltensregulierenden Faktoren gesucht, die bei einer Fütterung die Gedächtnisexpression unterdrücken. Als mögliche Kandidaten untersuchte ich Parameter, die zum Teil bereits bei verschiedenen futterbezogenen Verhaltensweisen unterschiedlicher Tierarten als „Sättigungssignale“ identifiziert worden waren (Marty et al. 2007; Powley and Phillips 2004; Havel 2001; Bernays and Chapman 1974; Simpson and Bernays 1983; Gelperin 1971a). Dabei stellte sich heraus, dass weder die „ernährende“ Eigenschaft des Futters, noch ein durch Futteraufnahme bedingter Anstieg der internen Glukosekonzentration für die Suppression des zuckerkonditionierten Gedächtnisses notwendig sind. Die Unterdrückung der Gedächtnisexpression kann auch nicht durch Unterschiede in den aufgenommenen Futtermengen, die als verhaltensinhibitorische Dehnungssignale des Verdauungstrakts wirken könnten, oder mit der Stärke des süßen Geschmacks erklärt werden. Die Suppression des zuckerbelohnten Verhaltens folgte den Konzentrationen der gefütterten Substanzen und war unabhängig von deren chemischen Spezifität. Deshalb wird die Osmolarität des aufgenommenen Futters als ein entscheidender Faktor für die Unterdrückung der zuckerkonditionierten Gedächtnisexpression angenommen. Weil nur inkorporierte Substanzen einen Unterdrückungseffekt hatten, wird ein osmolaritätsdetektierender Mechanismus im Körper 67 postuliert, wahrscheinlich im Verdauungstrakt und/oder der Hämolymphe. Die Hämolymphosmolarität ist als „Sättigungssignal“ bei einigen wirbellosen Tieren bereits nachgewiesen worden (Bernays and Chapman 1974; Simpson and Raubenheimer 1993; Gelperin 1971a; Phifer and Prior 1985). Deshalb habe ich mit Hilfe genetischer Methoden und ohne die Fliegen zu füttern, versucht über einen künstlich induzierten Anstieg der Trehaloseund Lipidkonzentrationen die Osmolarität der Hämolymphe in Drosophila zu erhöhen. Eine solche konzentrationserhöhende Wirkung für Lipide und die Trehalose, dem Hauptblutzucker der Insekten, ist bereits für das adipokinetische Hormon (AKH), das von Zellen der Corpora cardiaca exprimiert wird, nachgewiesen worden (Kim and Rulifson 2004; Lee and Park 2004; Isabel et al. 2005). Es stellte sich heraus, dass die künstliche Stimulierung AKH-produzierender Neurone das zuckerkonditionierten Verhalten temporär, reversible und selektiv unterdrückt. Gleiche Behandlungen hatten keinen Effekt auf ein aversiv konditioniertes olfaktorisches Gedächtnis oder ein naives Zuckerpräferenzverhalten. Wie aus dieser Arbeit hervorgeht, stellt wahrscheinlich die Osmolarität des Verdauungstrakts und der Hämolymphe oder nur der Hämolymphe ein physiologisches Korrelat zum Fütterungszustand dar und wirkt als unterdrückendes Signal. Dass Fütterungen das zuckerkonditionierte Verhalten und die Zuckerpräferenz supprimieren, die künstliche Stimulation AKH-produzierender Zellen aber selektiv nur die zuckerbelohnte Gedächtnisexpression unterdrückt, deutet auf mindestens zwei unterschiedliche „Sättigungssignalwege“ hin. Außerdem macht es deutlich wie uneinheitlich futterbezogene Verhaltensweisen, wie das zuckerbelohnte Verhalten und die naive Zuckerpräferenz, reguliert werden. N2 - In this work I investigated the regulation of the expression of the sugar conditioned behavior by feeding states in Drosophila melanogaster. During the training flies are able to associate an odor with a sugar reward. During the test these flies have the opportunity to show their odor memory. In accordance with previous findings (Tempel et al. 1983; Gruber 2006; Krashes et al. 2008), I also showed that the readiness to express sugar conditioned memory is controlled by the feeding state. The memory was only displayed by starved flies, whereas feedings of the flies until the test cause a reversible and temporary suppression of conditioned behavior. Feeding states similarly influence the expression of other food-related behaviors like sugar preference. After I have showed/confirmed the drastic influence of feeding state on sugar conditioned behavior, I tried to search for factors which suppress the memory expression of conditioned flies during feeding. Therefore I verified physiological parameters as promising candidates which have already been identified as “satiation-signals” for different food-related behaviors through the animal kingdom (Marty et al. 2007; Powley and Phillips 2004; Havel 2001; Bernays and Chapman 1974; Simpson and Bernays 1983; Gelperin 1971a). As the results revealed, neither the nutritional value of the available food nor an increase of the internal glucose-concentrations were necessary for suppressing conditioned behavior. Furthermore differences in sweet taste and in the amount of the ingested food, which likely serve as volumetric signals of the digestive system, were not critical determinants for inhibition of the memory expression. Because suppression followed the concentration of the substances independent of the chemical specificity, I conclude that the osmolarity of the ingested food is a critical factor for inhibition of sugar conditioned behavior. Only ingested substances were suppressive. Therefore an internal osmolarity-detecting mechanism is postulated, most probably in the digestive system or the hemolymph. Hemolymph-osmolarity has already been shown as a “satiation-signal” for some invertebrates (Bernays and Chapman 1974; Simpson and Raubenheimer 1993; Gelperin 1971a; Phifer and Prior 1985). Thus I tried to increase the hemolymph-osmolarity by an artificially induced rise of the concentration of lipids and trehalose, the main blood sugar of insects. A concentration-increasing effect such like this has already been shown for the adipokinetic hormone (AKH), which is expressed in cells of the corpora cardiaca (Kim and Rulifson 2004; Lee and Park 2004; Isabel et al. 2005). I demonstrated that an artificial stimulation of AKH69 producing neurons induces the suppression of sugar conditioned behavior, but leaves aversive conditioned behavior and naïve sugar preference unchanged. This work indicates that the osmolarity of the digestive system and the hemolymph or only of the hemolymph serves as (a) physiological correlate(s), which signals suppression. Feeding induced inhibition of the expression of sugar conditioned behavior and naïve sugar preference, whereas the artificial stimulation of AKH-producing cells selectively inhibited sugar rewarded memory expression alone. Thus I assume at least two separable “satiation”-pathways. Moreover these results demonstrate the non-uniform regulation of different food-related behaviors like sugar conditioned behavior and naïve sugar preference. KW - Taufliege KW - Futterentzug KW - Klassische Konditionierung KW - Konditionierung KW - Gedächtnis KW - Assoziatives Gedächtnis KW - Osmolarität KW - Drosophila melanogaster KW - zuckerkonditioniertes Verhalten KW - klassische Konditionierung KW - Futterentzug KW - Drosophila melanogaster KW - sugar-conditioned behaviour KW - classical conditioning KW - food deprivation KW - starvation Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48802 ER - TY - THES A1 - Bertolucci, Franco T1 - Operant and classical learning in Drosophila melanogaster: the ignorant gene (ign) T1 - Operantes und klassisches Lernen in Drosophila melanogaster: das ignorant Gen (ign) N2 - One of the major challenges in neuroscience is to understand the neuronal processes that underlie learning and memory. For example, what biochemical pathways underlie the coincidence detection between stimuli during classical conditioning, or between an action and its consequences during operant conditioning? In which neural substructures is this information stored? How similar are the pathways mediating these two types of associative learning and at which level do they diverge? The fly Drosophila melanogaster is an appropriate model organism to address these questions due to the availability of suitable learning paradigms and neurogenetic tools. It permits an extensive study of the functional role of the gene S6KII which in Drosophila had been found to be differentially involved in classical and operant conditioning (Bertolucci, 2002; Putz et al., 2004). Genomic rescue experiments showed that olfactory conditioning in the Tully machine, a paradigm for Pavlovian olfactory conditioning, depends on the presence of an intact S6KII gene. This rescue was successfully performed on both the null mutant and a partial deletion, suggesting that the removal of the phosphorylating unit of the kinase was the main cause of the functional defect. The GAL4/UAS system was used to achieve temporal and spatial control of S6KII expression. It was shown that expression of the kinase during the adult stage was essential for the rescue. This finding ruled out a developmental origin of the mutant learning phenotype. Furthermore, targeted spatial rescue of S6KII revealed a requirement in the mushroom bodies and excluded other brain structures like the median bundle, the antennal lobes and the central complex. This pattern is very similar to the one previously identified with the rutabaga mutant (Zars et al., 2000). Experiments with the double mutant rut, ign58-1 suggest that both rutabaga and S6KII operate in the same signalling pathway. Previous studies had already shown that deviating results from operant and classical conditioning point to different roles for S6KII in the two types of learning (Bertolucci, 2002; Putz, 2002). This conclusion was further strengthened by the defective performance of the transgenic lines in place learning and their normal behavior in olfactory conditioning. A novel type of learning experiment, called “idle experiment”, was designed. It is based on the conditioning of the walking activity and represents a purely operant task, overcoming some of the limitations of the “standard” heat-box experiment, a place learning paradigm. The novel nature of the idle experiment allowed exploring “learned helplessness” in flies, unveiling astonishing similarities to more complex organisms such as rats, mice and humans. Learned helplessness in Drosophila is found only in females and is sensitive to antidepressants. N2 - Eine der größten Herausforderungen in der Neurobiologie ist es, die neuronalen Prozesse zu verstehen, die Lernen und Gedächtnis zugrundeliegen. Welche biochemischen Pfade liegen z.B. der Koinzidenzdetektion von Reizen (klassische Konditionierung) oder einer Handlung und ihren Konsequenzen (operante Konditionierung) zugrunde? In welchen neuronalen Unterstrukturen werden diese Informationen gespeichert? Wie ähnlich sind die Stoffwechselwege, die diese beiden Arten des assoziativen Lernens vermitteln und auf welchem Niveau divergieren sie? Drosophila melanogaster ist wegen der Verfügbarkeit von Lern-Paradigmen und neurogenetischen Werkzeugen ein geeigneter Modell-Organismus, zum diese Fragen zu adressieren. Er ermöglicht eine umfangreiche Studie der Funktion des Gens S6KII, das in der Taufliege in klassischer und operanter Konditionierung unterschiedlich involviert ist (Bertolucci, 2002; Putz et al., 2004). Rettungsexperimenten zeigen, dass die olfaktorische Konditionierung in der Tully Maschine (ein klassisches, Pawlow’sches Konditionierungsparadigma) von dem Vorhandensein eines intakten S6KII Gens abhängt. Die Rettung war sowohl mit einer vollständigen, als auch einer partiellen Deletion erfolgreich und dies zeigt, dass der Verlust der phosphorylierenden Untereinheit der Kinase die Hauptursache des Funktionsdefektes war. Das GAL4/UAS System wurde benutzt, um die S6KII Expression zeitlich und räumlich zu steuern. Es wurde gezeigt, dass die Expression der Kinase während des adulten Stadiums für die Rettung hinreichend war. Dieser Befund schließt eine Entwicklungsstörung als Ursache für den mutanten Phänotyp aus. Außerdem zeigte die gezielte räumliche Rettung von S6KII die Notwendigkeit der Pilzkörper und schloss Strukturen wie das mediane Bündel, die Antennalloben und den Zentralkomplex aus. Dieses Muster ist dem vorher mit der rutabaga Mutation identifizierten sehr ähnlich (Zars et al., 2000). Experimente mit der Doppelmutante rut, ign58-1 deuten an, dass rutabaga und S6KII im gleichen Signalweg aktiv sind. Vorhergehende Studien hatten bereits gezeigt, dass die unterschiedlichen Ergebnisse bei operanter und klassischer Konditionierung auf verschiedenen Rollen für S6KII in den zwei Arten des Lernens hindeuten (Bertolucci, 2002; Putz, 2002). Diese Schlussfolgerung wurde durch den mutanten Phänotyp der transgenen Linien in der Positionskonditionierung und ihr wildtypisches Verhalten in der klassischen Konditionierung zusätzlich bekräftigt. Eine neue Art von Lern-Experiment, genannt „Idle Experiment“, wurde entworfen. Es basiert auf der Konditionierung der Laufaktivität, stellt eine operante Aufgabenstellung dar und überwindet einige der Limitationen des „Standard“ Heat-Box Experimentes. Die neue Art des Idle Experimentes erlaubt es, „gelernte Hilflosigkeit“ in Fliegen zu erforschen, dabei zeigte sich eine erstaunliche Ähnlichkeit zu den Vorgängen in komplizierteren Organismen wie Ratten, Mäusen oder Menschen. Gelernte Hilflosigkeit in der Taufliege wurde nur in den Weibchen beobachtet und wird von Antidepressiva beeinflusst. KW - Klassische Konditionierung KW - Instrumentelle Konditionierung KW - Konditionierung KW - Operante Konditionierung KW - Lernen KW - Räumliches Gedächtnis KW - Assoziatives Gedächtnis KW - Gedächtnis KW - MAP-Kinase KW - Drosophila KW - Taufliege KW - Gelernte Hilflosigkeit KW - CREB KW - S6KII KW - p90RSK KW - RSK KW - p90 ribosomal S6 kinase KW - ribosomal S6 kinase II KW - operant conditioning KW - classical conditioning KW - associative learning KW - learned helplessness Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-33984 ER - TY - THES A1 - Thum, Andreas Stephan T1 - Sugar reward learning in Drosophila : neuronal circuits in Drosophila associative olfactory learning T1 - Zucker-Belohnungslernen von Drosophila N2 - Genetic intervention in the fly Drosophila melanogaster has provided strong evidence that the mushroom bodies of the insect brain act as the seat of memory traces for aversive and appetitive olfactory learning (reviewed in Heisenberg, 2003). In flies, electroshock is mainly used as negative reinforcer. Unfortunately this fact complicates a comparative consideration with other inscets as most studies use sugar as positive reinforcer. For example, several lines of evidence from honeybee and moth have suggested another site, the antennal lobe, to house neuronal plasticity underlying appetitive olfactory memory (reviewed in Menzel, 2001; Daly et al., 2004). Because of this I focused my work mainly on appetitive olfactory learning. In the first part of my thesis, I used a novel genetic tool, the TARGET system (McGuire et al., 2003), which allows the temporally controlled expression of a given effector gene in a defined set of cells. Comparing effector genes which either block neurotransmission or ablate cells showed important differences, revealing that selection of the appropriate effector gene is critical for evaluating the function of neural circuits. In the second part, a new engram of olfactory memory in the Drosophila projection neurons is described by restoring Rutabaga adenlylate cyclase (rut-AC) activity specifically in these cells. Expression of wild-type rutabaga in the projection neurons fully rescued the defect in sugar reward memory, but not in aversive electric shock memory. No difference was found in the stability of the appetitive memories rescued either in projection neurons or Kenyon cells. In the third part of the thesis I tried to understand how the reinforcing signals for sugar reward are internally represented. In the bee Hammer (1993) described a single octopaminergic neuron – called VUMmx1 – that mediates the sugar stimulus in associative olfactory reward learning. Analysis of single VUM neurons in the fly (Selcho, 2006) identified a neuron with a similar morphology as the VUMmx1 neuron. As there is a mutant in Drosophila lacking the last enzymatic step in octopamine synthesis (Monastirioti et al., 1996), Tyramine beta Hydroxylase, I was able to show that local Tyramine beta Hydroxylase expression successfully rescued sugar reward learning. This allows to conclude that about 250 cells including the VUM cluster are sufficient for mediating the sugar reinforcement signal in the fly. The description of a VUMmx1 similar neuron and the involvement of the VUM cluster in mediating the octopaminergic sugar stimulus are the first steps in establishing a neuronal map for US processing in Drosophila. Based on this work several experiments are contrivable to reach this ultimate goal in the fly. Taken together, the described similiarities between Drosophila and honeybee regarding the memory organisation in MBs and PNs and the proposed internal representation of the sugar reward suggest an evolutionarily conserved mechanism for appetitive olfactory learning in insects. N2 - Arbeiten über das assoziative olfaktorische Lernen bei Drosophila, bei denen definierte Gruppen von Nerven genetisch verändert wurden, haben gezeigt, dass die Pilzkörper des Insektengehirns Gedächtnisspuren für aversives und appetitives Geruchslernen besitzen (Heisenberg, 2003). Hierzu wird bei der Fliege meistens Elektroschock als negativer Reiz bei der Pavlovschen Konditionierung benutzt. Leider erschwert dies einen Vergleich mit anderen Insekten, da in den meisten Studien Zucker als positiver Stimulus verwendet wird. Interessanterweise schlagen mehrere Arbeiten bei der Biene und der Motte zusätzlich zu den Pilzkörpern einen weiteren Bereich im Insektengehirn vor, der eine Gedächtnisspur des appetitiven Geruchslernens besitzt, die Antennalloben (Menzel, 2001; Daly et al., 2004). Aus diesen Gründen habe ich mich in meiner Arbeit intensiv mit dem appetitiven Geruchslernen beschäftigt. Im ersten Teil meiner Arbeit habe ich das TARGET System verwendet (McGuire et al., 2003), welches die zeitlich kontrollierte Expression eines beliebigen Reportergens in definierten Zellen erlaubt. Ein Vergleich verschiedener Effektoren zeigte, dass Proteine, die die Neurotransmission blocken (Shits; TNT, Kir2.1), besser geeignet sind, um die Funktion neuronaler Schaltkreise in Drosophila zu untersuchen. Effektoren, die Zellen abtöten, entfalten lediglich während der Entwicklung ihre volle Aktivität und eignen sich daher, z.B. um das larvale Verhalten zu analysieren. Im zweiten Teil beschreibe ich eine neue Gedächtnisspur für das Geruchslernen in den Projektionsneuronen. Die Expression des wildtypischen rutabaga Gens ausschließlich in diesen Zellen, rettete den Defekt im Zuckerlernen, nicht aber im Elektroschocklernen. Ferner scheinen die Gedächtnisspuren des appetitven Geruchslernens im Pilzkörper und den Projektionsneuronen gleich stabil zu sein. Im dritten Teil dieser Arbeit wurde die Frage gestellt, wie das Belohnungssignal des Zuckers im Fliegengehirn verarbeitet wird. Hammer (1993) beschrieb in der Biene ein einzelnes octopaminerges Neuron, das VUMmx1 Neuron, welches den Zuckerreiz beim assoziativen Geruchslernen vermittelt. Eine Einzelzellanalyse des VUM clusters von Drosophila zeigte ein ähnliches VUMmx1 Neuron erstmals bei der Fliege (M. Selcho, Diplomarbeit). Durch die lokale Expression der Tyramin beta Hydroxylase, das Oktopamin synthetisierende Enzym, im T-beta-H Mutanten Hintergrund, konnte gezeigt werden, dass ca. 250 Zellen (inklusive des VUM Clusters) ausreichen, das Belohnungssignal des Zuckers zu vermitteln. Beides, die Identifizierung eines VUMmx1 ähnlichen Neurons in der Fliege und die Eingrenzung der Neuronen, die das Belohnungssignal vermitteln, bilden die Basis für weitergehende Versuche. Diese erlauben es, neuronale Schaltkreise der US (Zucker)-Verarbeitung beim assoziativen olfaktorischen Lernen detailliert zu beschreiben. Insgesamt legen die übereinstimmenden Gedächtnisspuren im Pilzkörper und den Projektionsneuronen von Drosophila und der Honigbiene nahe, dass das olfaktorische Belohnungslernen einem in der Evolution konservierten Mechanismus entstammt. KW - Taufliege KW - Geruchswahrnehmung KW - Lernen KW - Neurologie KW - Zucker KW - Lernen KW - Gedächtnis KW - Dropsophila KW - sugar KW - learning KW - memory KW - drosophila Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17930 ER - TY - THES A1 - Masek, Pavel T1 - Odor intensity learning in Drosophila T1 - Duftintensitätslernen bei Drosophila N2 - It has been known for a long time that Drosophila can learn to discriminate not only between different odorants but also between different concentrations of the same odor. Olfactory associative learning has been described as a pairing between odorant and electric shock and since then, most of the experiments conducted in this respect have largely neglected the dual properties of odors: quality and intensity. For odorant-coupled short-term memory, a biochemical model has been proposed that mainly relies on the known cAMP signaling pathway. Mushroom bodies (MB) have been shown to be necessary and sufficient for this type of memory, and the MB-model of odor learning and short-term memory was established. Yet, theoretically, based on the MB-model, flies should not be able to learn concentrations if trained to the lower of the two concentrations in the test. In this thesis, I investigate the role of concentration-dependent learning, establishment of a concentration-dependent memory and their correlation to the standard two-odor learning as described by the MB-model. In order to highlight the difference between learning of quality and learning of intensity of the same odor I have tried to characterize the nature of the stimulus that is actually learned by the flies, leading to the conclusion that during the training flies learn all possible cues that are presented at the time. The type of the following test seems to govern the usage of the information available. This revealed a distinction between what flies learned and what is actually measured. Furthermore, I have shown that learning of concentration is associative and that it is symmetrical between high and low concentrations. I have also shown how the subjective quality perception of an odor changes with changing intensity, suggesting that one odor can have more than one scent. There is no proof that flies perceive a range of concentrations of one odorant as one (odor) quality. Flies display a certain level of concentration invariance that is limited and related to the particular concentration. Learning of concentration is relevant only to a limited range of concentrations within the boundaries of concentration invariance. Moreover, under certain conditions, two chemically distinct odorants could smell sufficiently similarly such, that they can be generalized between each other like if they would be of the same quality. Therefore, the abilities of the fly to identify the difference in quality or in intensity of the stimuli need to be distinguished. The way how the stimulus is analyzed and processed speaks in favor of a concept postulating the existence of two separated memories. To follow this concept, I have proposed a new form of memory called odor intensity memory (OIM), characterized it and compared it to other olfactory memories. OIM is independent of some members of the known cAMP signaling pathway and very likely forms the rutabaga-independent component of the standard two-odor memory. The rutabaga-dependent odor memory requires qualitatively different olfactory stimuli. OIM is revealed within the limits of concentration invariance where the memory test gives only sub-optimal performance for the concentration differences but discrimination of odor quality is not possible at all. Based on the available experimental tools, OIM seems to require the mushroom bodies the same as odor-quality memory but its properties are different. Flies can memorize the quality of several odorants at a given time but a newly formed memory of one odor interferes with the OIM stored before. In addition, the OIM lasts only 1 to 3 hours - much shorter than the odor-quality memory. N2 - Assoziatives olfaktorisches Lernen bei Drosophila wurde ursprünglich als die Paarung eines Duftes mit einem elektrischen Bestrafungsreiz beschrieben. Seit langem ist dazu bekannt, daß Drosophila nicht nur lernen kann zwei Düfte zu unterscheiden, sondern auch verschiedene Konzentrationen desselben Dufts. Jedoch wird in den meisten auf diese Art durchgeführten Experimenten die Duftintensität weitestgehend ignoriert. - Für das olfaktorische Kurzzeitgedächtnis wurde ein biochemisches Modell vorgeschlagen, welches sich hauptsächlich auf die bekannte cAMP-Signalkaskade stützt. Es wurde gezeigt, dass die Pilzkörper (mushroom bodies, „MB“) notwendig und hinreichend für diese Art der Gedächtnisbildung sind und ein MB-Modell für Duftlernen und Kurzzeitgedächtnis konnte etabliert werden. Interessanterweise sollten Fliegen nach diesem Modell Konzentrationsunterschiede nur in einer Richtung lernen können. Sie würden den gelernten Duft nur gegenüber einer niedrigeren Konzentration wiedererkennen. In der vorliegenden Doktorarbeit habe ich das konzentrationsabhängige Duftlernen und seine Beziehung zum MB-Modell untersucht. Dabei hat sich gezeigt, dass die Fliege eine Gedächtnisspur für Geruchsintensität anlegt. Um den Unterschied zwischen dem Lernen einer Qualität und dem einer Intensität des gleichen Duftes hervorzuheben, habe ich versucht, den Reiz, der eigentlich von der Fliege gelernt wird, zu charakterisieren. Dies führte zu der Schlussfolgerung, dass die Fliege während des Trainings alle in diesem Zeitabschnitt präsentierten Reize erlernt. Erst der dem Training folgende Test scheint den Gebrauch der verfügbaren Information festzulegen. Diese Erkenntnis ist eine wesentliche Grundlage um zwischen dem Testergebnis und dem, was die Fliege gelernt hat zu unterscheiden. Ich habe außerdem gezeigt, daß das Konzentrationslernen eine Form assoziativen Lernens ist und, dass entgegen der Erwartung nach dem MB-Modell eine Symmetrie zwischen den Lernwerten für die hohe und niedrige Konzentration besteht. Es gibt keinen Beweis dafür, dass Fliegen eine Vielfalt von Konzentrationen desselben Duftes als ein und dieselbe (Duft-)Qualität wahrnehmen. Die Ergebnisse legen vielmehr nahe, dass sich bei einer größeren Veränderung der Intensität eines Duftes für die Fliege (wie in vielen Fällen auch beim Menschen) seine Qualität verändert. Demzufolge ist mit jedem Geruchsstoff mehr als nur eine Fliegen-subjektive Geruchsqualität verbunden. Fliegen zeigen andererseits in engen Grenzen Konzentrationsinvarianz. Sie generalisieren zwischen Konzentrationen eines Duftes innerhalb einer Konzentrationsdekade. Deshalb ist das Konzept des Konzentrationslernens nur für ein begrenztes Konzentrationsspektrum innerhalb der Grenzen der Konzentrationsinvarianz relevant. Des weiteren habe ich gezeigt, dass unter besonderen Bedingungen zwei chemisch verschiedene Düfte generalisiert werden können. Möglicherweise haben die beiden Düfte hinreichend "ähnliche" oder gleiche Fliegen-subjektive Qualität und können nur nach der Intensität unterschieden werden. Die Fliege hat die Fähigkeit im Test Unterschiede einerseits in der Qualität und andererseits in der Intensität des Reizes zu ermitteln. Die Art und Weise, wie der Reiz analysiert und verarbeitet wird, erfordern ein Konzept zweier getrennter Gedächtnisse. Dementsprechend habe ich eine neue Gedächtnisart, ein sogenanntes Duftintensitätsgedächtnis (OIM) vorgeschlagent und versucht dieses neben anderen olfaktorischen Gedächtnissen einzuordnen. Das OIM ist unabhängig bezüglich einiger Bestandteile des bekannten cAMP-Signalwegs und stellt höchstwahrscheinlich den rutabaga-unabhängigen Teil des Zwei-Düfte-Lernens dar. Das rutabaga-abhängige Duftgedächtnis benötigt qualitativ verschiedene Duftreize. Das OIM reicht lediglich für eine suboptimale Leistung aus, funktioniert aber in den Grenzen der Konzentrationsinvarianz, innerhalb derer die Diskriminierung und damit auch das Lernen der Duftqualität nicht möglich sind. Das OIM scheint wie die Duftqualitätsgedächtnisse die Pilzkörper zu benötigen. Aber die Art der Speicherung ist von der der Duftqualitätsgedächtnisse verschieden. Fliegen können viele Duftqualitäten zu einem bestimmten Zeitpunkt aus dem Gedächtnis abrufen, jedoch interferiert ein neu gebildetes Gedächtnis eines bestimmten Duftes mit dem bereits gespeicherten OIM. Außerdem ist das OIM für nur 1-3 Stunden stabil, was erheblich kürzer als beim Duftgedächtnis ist. KW - Taufliege KW - Geruchswahrnehmung KW - Gedächtnis KW - Lernen KW - Intensität KW - Olfaktorik KW - Lernen KW - Gedächtnis KW - Drosophila KW - intensity KW - olfaction KW - memory KW - learning KW - Drosophila Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15546 ER - TY - THES A1 - Bennetz, Maike T1 - Auffälligkeiten in Gedächtnisfunktionen bei Kindern mit Lese-Rechtschreibschwäche T1 - Dyslexic Children: Special Aspects of Memory Functions N2 - Ziel der Studie war die Exploration von Funktionen des Kurzzeitgedächtnisses bei lese-rechtschreibschwachen Kindern (LRS) im Vergleich zu einer schriftsprachlich normal entwickelten Kontrollgruppe (KG). Gedächtnisfunktionen sollten im Hinblick auf Entwicklungsveränderungen über eine Altersspanne von acht bis dreizehn Jahren untersucht werden. Bei einem möglichen Gedächtnisdefizit sollte überprüft werden, ob dieses sich nur bei schriftsprachähnlichem Material äußerte oder ob es sich um ein allgemeineres Defizit handelte. Insgesamt 65 lese-rechtschreibschwache und schriftsprachlich normal entwickelte Kinder der Altersgruppen 8-9 Jahre, 10-11 Jahre und 12-13 Jahre wurden Aufgaben zur Gedächtnisspanne, zur Benennungsgeschwindigkeit und zur Suchrate unterzogen. In den Aufgaben zur Gedächtnisspanne und zur Benennungsgeschwindigkeit zeigten die lese-rechtschreibschwachen Kinder deutlich schlechtere Leistungen als die Kontrollgruppe, und beide untersuchten Gruppen verbesserten sich in ihren Leistungen mit ansteigendem Alter. Hinweise für ein schriftsprachorientiertes Defizit im Falle der Rechtschreibschwachen ließen sich den Aufgaben zur Gedächtnisspanne und zur Suchrate entnehmen. Zusammenfassend bestätigen die vorliegenden Ergebnisse Defizite in Funktionen des Kurzzeitgedächtnisses bei LRS. Über die untersuchte Altersspanne hinweg kam es nicht zu einer Annäherung der Leistungen der Rechtschreibschwachen an die der Kontrollgruppe, was für ein bleibendes Defizit im Fall der LRS spricht. Um zu eindeutigen Ergebnissen hinsichtlich der Schriftsprachabhängigkeit der Gedächtnisdefizite bei LRS kommen zu können, müssen weitere Studien abgewartet werden. N2 - The aim of the study was to investigate short term memory functions in dyslexic children compared to a control group with normally developed written language skills. Memory functions were to be examined with regard to developmental alterations within an age range of eight to thirteen years. In case of a detected possible memory deficiency, it had to be tested if this became manifest only with material resembling written language or if it represented a more general deficiency. A total of 65 dyslexic and control children with normally developed written language skills of age groups 8-9, 10-11, and 12-13 years were tested for memory span, naming speed and search rate. Achievements in memory span and naming speed of the dyslexic children were distinctly worse than those of the controls. Both examined groups improved with age. The results of memory span and search rate testings provide hints towards a written language related deficiency. In summary the presented data confirm deficits in short term memory functions of dyslexic children. In the examined age range the achievements of dyslexics and controls did not approach with rising age, suggesting a permanent deficit of the dyslexic group. Further studies are needed to examine if dyslexia related memory deficiencies are restricted to written language skills. KW - Lese-Rechtschreibschwäche KW - Gedächtnis KW - Gedächtnisspanne KW - Benennungsgeschwindigkeit KW - Suchrate KW - dyslexia KW - memory KW - memory-span KW - naming-speed KW - search-rate Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10941 ER - TY - THES A1 - Fischer, Matthias T1 - Lokalisierung eines Gedächtnisses bei Drosophila melanogaster T1 - Localization of a Memory in Drosophila N2 - Es konnte in dieser Arbeit gezeigt werden, daß das olfaktorische Kurzzeitgedächtnis von Drosophila melanogaster in den Pilzkörpern lokalisiert ist. Zu Beginn dieser Doktorarbeit war bekannt, daß die Pilzkörper notwendig für das Geruchsgedächtnis sind. Drei unabhängige Methoden der Ablation bzw. Veränderung der biochemischen Eigenschaften der Pilzkörper hatten zu dem selben Ergebnis geführt, daß funktionierende Pilzkörper unentbehrlich für den Aufbau eines Geruchsgedächtnisses sind. Noch informativer als ein Experiment, in dem durch Zerstörung einer Struktur eine Leistung unmöglich gemacht wird ist der umgekehrte Weg, der durch einen gewebespezifischen „rescue“ die Leistung wiederherstellt. Dazu wurde in dieser Arbeit das wildtypische Allel des Gens rutabaga in rut-mutanten Fliegen mit Hilfe des Gal4/UAS-Systems ausschließlich in den Pilzkörpern, bzw., im Gegenexperiment, nur außerhalb der Pilzkörper zur Expression gebracht. rut kodiert für die Adenylatcyclase I, die mit synaptischer Plastizität bei Drosophila, Aplysia und Mäusen in Verbindung gebracht wird. Man geht davon aus, daß synaptische Plastizität die molekulare Grundlage für Lernen und Gedächtnis ist. Die AC I stellt cAMP her, dessen Menge und präzise Regulation die Übertragungsstärke an Neuronen beeinflußt. Eine Störung dieses Signalweges z. B. durch die rut-Mutation führt zu einer Beeinträchtigung des Gedächtnisses bei Drosophila. rut wurde mit Hilfe des in Drosophila etablierten Gal4/UAS-Systems exprimiert: Der gewebespezifisch aktive Hefe-Transkriptionsfaktor Gal4 führt dazu, daß das hinter einen Gal4-spezifischen UAS-Promotor klonierte wildtypische rut-Gen in denjenigen Zellen transkribiert wird, in denen der Transkriptionsfaktor vorhanden ist. Dies wurde in einer rut-Mutante durchgeführt, so daß in allen anderen Zellen keine funktionierende AC I vorhanden war. Die rut-abhängige synaptische Plastizität wurde damit ausschließlich auf die gewünschten Regionen beschränkt. Das Expressionsmuster der Gal4-Linien wurde durch Immuncytochemie (Anti-Tau) sichtbar gemacht. Diese Fliegen wurden in einem klassischen Konditionierungsexperiment auf ihr Geruchs-Gedächtnis untersucht. Dazu wurden einer Gruppe von Fliegen nacheinander 2 Gerüche präsentiert, von denen einer mit Elektroschocks gepaart war. Nach ca. 2 min konnten diese Fliegen sich für einen der beiden Gerüche entscheiden, die nun gleichzeitig aus 2 unterschiedlichen Richtungen dargeboten wurden. Je nach Lernleistung entschieden sich mehr oder weniger Fliegen für den vorher unbestraften Geruch. Es ergab sich, daß der Ort im Gehirn, an dem die wildtypische AC I exprimiert wurde, über die Höhe des Gedächtniswertes entschied: Die AC I ausschließlich in den Pilzkörpern gewährte ein völlig normales Gedächtnis, wogegen die AC I außerhalb der Pilzkörper das Gedächtnis nicht gegenüber der rut-Mutante verbessern konnte. Die Analyse der Expressionsverteilung von insgesamt 9 getesteten Fliegenlinien mißt überdies dem -Lobus des Pilzkörpers eine besondere Bedeutung bei und läßt den Schluß zu, daß das hier untersuchte Gedächtnis ausschließlich in den -Loben lokalisiert ist. Dieses erfolgreiche rut-„rescue“ - Experiment zeigt, daß rut-abhängige synaptische Plastizität ausschließlich in den Pilzkörpern ausreichend für ein wildtypisches Gedächtnis ist. Dieses Ergebnis vervollständigt die Erkenntnisse von den Pilzkörper-Ablationsexperimenten insofern, als nun die Aussage zutrifft, daß die Pilzkörper notwendig und hinreichend für das olfaktorische Kurzzeitgedächtnis sind. N2 - Memories are thought to be due to lasting synaptic modifications in the brain. The search for memory traces has relied predominantly on determining regions that are necessary for the process. However, a more informative approach is to define the smallest sufficient set of brain structures. The rutabaga adenylyl cyclase, an enzyme that is ubiquitously expressed in the Drosophila brain and that mediates synaptic plasticity, is needed exclusively in the Kenyon cells of the mushroom bodies for a component of olfactory short-term memory. This demonstrates that synaptic plasticity in a small brain region can be sufficient for memory formation. KW - Gedächtnis KW - Drosophila KW - Pilzkörper KW - rutabaga KW - memory KW - Drosophila KW - mushroom-body KW - rutabaga Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8050 ER - TY - THES A1 - Schwärzel, Martin T1 - Localizing engrams of olfactory memories in Drosophila T1 - Lokalisation von Duftgedächtnissen in Drosophila N2 - Zars and co-workers were able to localize an engram of aversive olfactory memory to the mushroom bodies of Drosophila (Zars et al., 2000). In this thesis, I followed up on this finding in two ways. Inspired by Zars et al. (2000), I first focused on the whether it would also be possible to localize memory extinction.While memory extinction is well established behaviorally, little is known about the underlying circuitry and molecular mechanisms. In extension to the findings by Zars et al (2000), I show that aversive olfactory memories remain localized to a subset of mushroom body Kenyon cells for up to 3 hours. Extinction localizes to the same set of Kenyon cells. This common localization suggests a model in which unreinforced presentations of a previously learned odorant intracellularly antagonizes the signaling cascades underlying memory formation. The second part also targets memory localization, but addresses appetitive memory. I show that memories for the same olfactory cue can be established through either sugar or electric shock reinforcement. Importantly, these memories localize to the same set of neurons within the mushroom body. Thus, the question becomes apparent how the same signal can be associated with different events. It is shown that two different monoamines are specificaly necessary for formation of either of these memories, dopamine in case of electric shock and octopamine in case of sugar memory, respectively. Taking the representation of the olfactory cue within the mushroom bodies into account, the data suggest that the two memory traces are located in the same Kenyon cells, but in separate subcellular domains, one modulated by dopamine, the other by octopamine. Taken together, this study takes two further steps in the search for the engram. (1) The result that in Drosophila olfactory learning several memories are organized within the same set of Kenyon cells is in contrast to the pessimism expressed by Lashley that is might not be possible to localize an engram. (2) Beyond localization, a possibible mechanism how several engrams about the same stimulus can be localized within the same neurons might be suggested by the models of subcellular organisation, as postulated in case of appetitive and aversive memory on the one hand and acquisition and extinction of aversive memory on the other hand. N2 - Troy Zars und seine Mitarbeiter konnten für das olfaktorische Elektoschockgedächtnis von Drosophila zum ersten mal die Spur eines Duftgedächtnisses in den Pilzkörpern (PK) lokalisieren. Darauf aufbauend stelle ich nun in dieser Arbeit zwei Fragen: 1. Wäre es möglich auch den Prozess der Auslöschung dieses Gedächtnissen zu lokalisieren? Obwohl die Verhaltensphysiologie der Gedächtnisauslöschung sehr gut charakterisiert sind weiss man sehr wenig über die daran beteiligten molekularen Signalmechanismen und Strukturen. In Anlehnung an die Arbeit von Zars et al. (2000) kann ich zeigen, dass sowohl die Speicherung wie auch die Auslöschung dieses Gedächt-nisses in den gleichen Kenyonzellen der PK geschieht. Diese gemeinsame zelluläre Lokalisierung legt ein Model nahe, in dem die wiederholte Präsentation des mit Elektro-schock assoziierten Duftes während der Auslöschung, intrazellulär auf die gleichen Signalwege wirkt die auch für die Bildung des Duftgedächtnisses notwendig sind. 2. Wäre es möglich auch die Spur eines attraktive Duftgedächtnisses zu lokalisieren? Ich kann zeigen, dass Gedächtnisse über den gleichen Duft sowohl attraktiv als auch repulsiv sein können, je nachdem ob Zucker oder Elektroshock während der pavlovschen Konditionierung benutzt wird. Beide Gedächtnisse sind im gleichen Satz von Kenyonzellen lokalisiert. Dies wirft die Frage auf, wie das gleiche Duftsignal mit zwei verschiedenen Ereignissen (Zucker und Elektroschock) assoziiert werden kann. Es zeigt sich, dass zwei unterschiedliche Monoamine jeweils spezifisch für das Anlegen eines der beiden Gedächtnisse verantwortlich sind; Dopamin für das Electroschockgedächtnis und Octopamin für das Zuckergedächtnis. Berücksichtigt man wie Duftreize in den PK kodiert sind, ergibt sich ein Model bei dem zwar beide Spuren in einer Zelle lokalisiert sind, diese jedoch durch die Nutzung unterschiedlicher subzellulärer Bereiche voneinander getrennt werden. Jeweils einer dieser Bereiche wäre durch Dopamin moduliert, der andere durch Octopamin. Das Fazit dieser Studie ist, dass zwei wichtige Punkte bei der Lokalisierung von Gedächtnis-spuren aufgezeigt wurden. (1) Die Tatsache, dass beim Duftlernen von Drosophila mehrere Spuren verschiedener Duftgedächtnisse lokalisiert worden sind widerlegt die von Lashley aufgestellte Behauptung, dass Gedächtnisse nicht lokalisierbar sind. (2) Verschiedene Spuren können für den gleichen Duft in den gleichen Zellen angelegt werden, sofern man eine subzelluläre Organisation annimmt, wie sie sowohl für Zucker- und Elektroschockgedächtnis, als auch Gedächtnisbildung und Auslöschen vorgeschlagen werden KW - Taufliege KW - Gedächtnis KW - Lernen KW - Signaltransduktion KW - Gedächtnis KW - Verhalten KW - Catecholamine KW - Signaltransduktion KW - Lernen KW - Memory KW - Behaviour KW - catecholamines KW - signaltransduction KW - learning Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5065 ER - TY - THES A1 - Putz, Gabriele T1 - Characterization of memories and ignorant (S6KII) mutants in operant conditioning in the heat-box T1 - Charakterisierung von Gedaechtnissen, sowie der ignorant(S6KII)-Mutante in der operanten Konditionierung in der Hitzekammer N2 - Learning and memory processes of operant conditioning in the heat-box were analysed. Age, sex, and larval desity were not critical parameters influencing memory, while low or high activity levels of flies were negatively correlated with their performance. In a search for conditioning parameters leading to high retention scores, intermittent training was shown to give better results than continuous training. As the memory test is the immediate continuation of the conditioning phase just omitting reinforcement, we obtain a memory which consists of two components: a spatial preference for one side of the chamber and a stay-where-you-are effect in which the side preference is contaminated by the persistence of heat avoidance. Intermittent training strengthens the latter. In the next part, memory retention was investigated. Flies were trained in one chamber and tested in a second one after a brief reminder training. With this direct transfer, memory scores reflect an associative learning process in the first chamber. To investigate memory retention after extended time periods, indirect transfer experiments were performed. The fly was transferred to a different environment between training and test phases. With this procedure an after-effect of the training was still observed two hours later. Surprisingly, exposure to the chamber without conditioning also lead to a memory effect in the indirect transfer experiment. This exposure effect revealed a dispositional change that facilitates operant learning during the reminder training. The various memory effects are independent of the mushroom bodies. The transfer experiments and yoked controls proved that the heat-box records an associative memory. Even two hours after the operant conditioning procedure, the fly remembers that its position in the chamber controls temperature. The cAMP signaling cascade is involved in heat-box learning. Thus, amnesiac, rutabaga, and dunce mutants have an impaired learning / memory. Searching for, yet unknown, genes and signaling cascades involved in operant conditioning, a Drosophila melanogaster mutant screen with 1221 viable X-chromosome P-element lines was performed. 29 lines with consistently reduced heat avoidance/ learning or memory scores were isolated. Among those, three lines have the p[lacW] located in the amnesiac ORF, confirming that with the chosen candidate criteria the heat-box is a useful tool to screen for learning and /or memory mutants. The mutant line ignP1 (8522), which is defective in the gene encoding p90 ribosomal S6 kinase (S6KII), was investigated. The P-insertion of line ignP1 is the first Drosophila mutation in the ignorant (S6KII) gene. It has the transposon inserted in the first exon. Mutant males are characterized by low training performance, while females perform well in the standard experiment. Several deletion mutants of the ignorant gene have been generated. In precise jumpouts the phenotype was reverted. Imprecise jumpouts with a partial loss of the coding region were defective in operant conditioning. Surprisingly, null mutants showed wild-type behavior. This might indicate an indirect effect of the mutated ignorant gene on learning processes. In classical odor avoidance conditioning, ignorant null mutants showed a defect in the 3-min, 30-min, and 3-hr memory, while the precise jumpout of the transposon resulted in a reversion of the behavioral phenotype. Deviating results from operant and classical conditioning indicate different roles for S6KII in the two types of learning. N2 - Es wurden die Lern- und Gedächtnisprozesse bei der operanten Konditionierung in der Hitzekammer untersucht. Alter, Geschlecht und Larvendichte waren keine kritischen Parameter, die das Gedächtnis beeinflussten, während sowohl niedrige als auch hohe Laufaktivität der Fliegen mit deren Performance negativ korreliert war. Auf der Suche nach Konditionierungsparametern, die zu hohen Gedächtniswerten führen, lieferte ein Training mit mehreren Training/Test-Intervallen bessere Ergebnisse als ein kontinuierliches Training. Da der Gedächtnistest, bei dem die Hitze abgestellt wird, direkt im Anschluß an die Konditionierungsphase erfolgt, erhalten wir einen Gedächtniswert, der zwei Komponenten beinhaltet: eine räumliche Präferenz für eine Kammerhälfte und einem "bleib-wo-du-bist Effekt", der sich aus Seitenpräferenz und langanhaltender Hitzevermeidung per se zusammensetzt. Ein Training mit mehreren Training/Test-Intervallen verstärkt letzteren Effekt. Im nächsten Teil meiner Arbeit wurde der Gedächtnisabfall untersucht. Fliegen wurden in einer Kammer trainiert und nach einem kurzen Erinnerungstraining in einer zweiten Kammer getestet. In diesem direkten Transfer spiegeln die Gedächtniswerte einen assoziativen Lernprozeß wieder, der in der ersten Kammer stattfindet. Um den Gedächtnisabfall nach längeren Zeitintervallen untersuchen zu können, wurden indirekte Transferexperimente durchgeführt. Die Fliege wurde dazu zwischen Trainings- und Testphasen in eine andere Umgebung gebracht. Mit Hilfe dieser Methode konnte ein Nacheffekt noch zwei Stunden nach dem Training beobachtet werden. Überraschenderweise führt im indirekten Transferexperiment ein Aufenthalt in der Kammer auch ohne Konditionierung zu einem Gedächtniseffekt. Dieser "Aufenthaltseffekt" spiegelt eine dispositionelle Veränderung wieder, die das operante Lernen während des Erinnerungstrainings begünstigt. Die verschiedenen Gedächtniseffekte sind pilzkörperunabhängig. Transferexperimente und Yoked-Kontrollen zeigten, dass in der Hitzekammer assoziatives Gedächtnis gemessen wird. Selbst zwei Stunden nach der operanten Konditionierung, erinnert sich die Fliege daran, dass ihre Position in der Kammer die dortige Temperatur kontrolliert. Die cAMP Signaltransduktionskaskade ist an den Lernprozessen der Fliegen in der Hitzekammer beteiligt. amnesiac, rutabaga und dunce Mutanten haben daher eine verminderte Lern- / Gedächtnisleistung. Um nach bisher unbekannten Genen und Signalkaskaden zu suchen, die in der operanten Konditionierung eine Rolle spielen, wurde ein Drosophila melanogaster Mutanten Screen mit 1221 lebensfähigen X-chromosomalen P-element Linien durchgeführt. 29 Linien mit konsistet reduzierten Lern- oder Gedächtniswerten wurden isoliert. Darunter befanden sich drei Linien mit einer p[lacW] Insertion im amnesiac ORF. Dieses Ergebnis bestätigt, dass die Hitzekammer mit den gewählten Kriterien ein hilfreiches Werkzeug bei der Suche nach Lern- und / oder Gedächtnismutanten ist. Die Mutante ignP1 (8522), die im Gen für p90 ribosomale S6 kinase (S6KII) einen Defekt besitzt, wurde untersucht. Die P-Insertion des ignP1 Stammes ist die erste Mutation im ignorant (S6KII) Gen. Das Transposons ist im ersten Exon inseriert. Männliche Mutanten sind durch eine niedrige Trainingsperformance gekennzeichnet, während sich Weibchen im Standardexperiment wildtypisch verhalten. Mehrere Deletionsmutanten im ignorant Gen wurden hergestellt. In präzisen Exzisionslinien war der Phänotyp revertiert, während impräzise Exzisionslinien mit teilweisem Verlust der kodierenden Region in der operanten Konditionierung einen Defekt zeigten defekt. Überraschenderweise wurde bei Nullmutanten wildtypisches Verhalten beobachtet. Dies könnte auf einen indirekten Effekt des mutierten ignorant Gens auf Lernprozesse hindeuten. Bei der klassischen Duftkonditionierung zeigten ignorant Nullmutanten einen Defekt im 3-min, 30-min und 3-Stunden Gedächtnis, während präzise Exzisionen des Transposons zu einer Reversion des Verhaltensphänotyps führten. Voneinander abweichende Ergebnisse bei der operanten und klassischen Konditionierung weisen darauf hin, dass S6KII unterschiedliche Rollen in diesen Formen des Lernens spielt. KW - Taufliege KW - Operante Konditionierung KW - Gedächtnis KW - Drosophila KW - Hitzekammer KW - operante Konditionierung KW - Gedaechtnis KW - p90 ribosomale S6 kinase KW - Drosophila KW - heat-box KW - operant conditioning KW - memory KW - p90 ribosomal S6 kinase Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4195 ER - TY - THES A1 - Brembs, Björn T1 - An Analysis of Associative Learning in Drosophila at the Flight Simulator T1 - Eine Ananlyse des assoziativen Lernens von Drosophila im Flugsimulator N2 - Most natural learning situations are of a complex nature and consist of a tight conjunction of the animal's behavior (B) with the perceived stimuli. According to the behavior of the animal in response to these stimuli, they are classified as being either biologically neutral (conditioned stimuli, CS) or important (unconditioned stimuli, US or reinforcer). A typical learning situation is thus identified by a three term contingency of B, CS and US. A functional characterization of the single associations during conditioning in such a three term contingency has so far hardly been possible. Therefore, the operational distinction between classical conditioning as a behavior-independent learning process (CS-US associations) and operant conditioning as essentially behavior-dependent learning (B-US associations) has proven very valuable. However, most learning experiments described so far have not been successful in fully separating operant from classical conditioning into single-association tasks. The Drosophila flight simulator in which the relevant behavior is a single motor variable (yaw torque), allows for the first time to completely separate the operant (B-US, B-CS) and the classical (CS-US) components of a complex learning situation and to examine their interactions. In this thesis the contributions of the single associations (CS-US, B-US and B-CS) to memory formation are studied. Moreover, for the first time a particularly prominent single association (CS-US) is characterized extensively in a three term contingency. A yoked control shows that classical (CS-US) pattern learning requires more training than operant pattern learning. Additionally, it can be demonstrated that an operantly trained stimulus can be successfully transferred from the behavior used during training to a new behavior in a subsequent test phase. This result shows unambiguously that during operant conditioning classical (CS-US) associations can be formed. In an extension to this insight, it emerges that such a classical association blocks the formation of an operant association, which would have been formed without the operant control of the learned stimuli. Instead the operant component seems to develop less markedly and is probably merged into a complex three-way association. This three-way association could either be implemented as a sequential B-CS-US or as a hierarchical (B-CS)-US association. The comparison of a simple classical (CS-US) with a composite operant (B, CS and US) learning situation and of a simple operant (B-US) with another composite operant (B, CS and US) learning situation, suggests a hierarchy of predictors of reinforcement. Operant behavior occurring during composite operant conditioning is hardly conditioned at all. The associability of classical stimuli that bear no relation to the behavior of the animal is of an intermediate value, as is operant behavior alone. Stimuli that are controlled by operant behavior accrue associative strength most easily. If several stimuli are available as potential predictors, again the question arises which CS-US associations are formed? A number of different studies in vertebrates yielded amazingly congruent results. These results inspired to examine and compare the properties of the CS-US association in a complex learning situation at the flight simulator with these vertebrate results. It is shown for the first time that Drosophila can learn compound stimuli and recall the individual components independently and in similar proportions. The attempt to obtain second-order conditioning with these stimuli, yielded a relatively small effect. In comparison with vertebrate data, blocking and sensory preconditioning experiments produced conforming as well as dissenting results. While no blocking could be found, a sound sensory preconditioning effect was obtained. Possible reasons for the failure to find blocking are discussed and further experiments are suggested. The sensory preconditioning effect found in this study is revealed using simultaneous stimulus presentation and depends on the amount of preconditioning. It is argued that this effect is a case of 'incidental learning', where two stimuli are associated without the need of reinforcement. Finally, the implications of the results obtained in this study for the general understanding of memory formation in complex learning situations are discussed. N2 - Die meisten Lernsituationen sind von komplexer Natur und bestehen aus einer engen Verknüpfung des Verhaltens eines Tieres (B) mit den wahrgenommenen Stimuli. Entsprechend der Reaktion des Tieres auf diese Stimuli werden diese als entweder biologisch neutral (konditionierte Stimuli, CS) oder signifikant (unkonditionierte Stimuli, US oder Verstärker) klassifiziert. Eine typische Lernsituation ist also durch eine Dreiwegebeziehung zwischen B, CS und US gekennzeichnet. Eine funktionelle Charakterisierung der Einzelassoziationen während des Lernens in einer solchen Dreiwegebeziehung war experimentell bisher kaum zugänglich. Operationell wird daher zwischen klassischer Konditionierung als verhaltensunabhängigem Lernvorgang (CS-US Assoziationen) und operanter Konditionierung als essentiell verhaltensabhängigem Lernen (B-US Assoziationen) unterschieden. In den meisten bisher beschriebenen Lernexperimenten ist noch nicht einmal diese Trennung in Einzelassoziationen vollständig durchzuführen gewesen. Im Drosophila Flugsimulator, in dem das relevante Verhalten eine einzelne Bewegungsvariable (das Gierungsdrehmoment) ist, können zum ersten Mal die operanten (B-US, B-CS) und die klassischen (CS-US) Bestandteile einer komplexen Lernsituation völlig getrennt und auf ihre Interaktionen hin untersucht werden. In der vorliegenden Arbeit wurden sowohl die Beiträge der Einzelassoziationen (CS-US, B-US und B-CS) bei der Akquisition der Gedächtnismatrize in komplexen Lernsituationen untersucht, als auch die Eigenschaften einer besonders prominenten Einzelassoziation (CS-US) während einer komplexen Lernsituation zum ersten Mal weitgehend charakterisiert. Mit einer gejochten (yoked) Kontrolle kann gezeigt werden, dass das klassische (CS-US) Musterlernen umfangreicheres Training als das operante Musterlernen erfordert. Außerdem kann die Fliege einen operant gelernter Stimulus von dem Verhalten mit dem er gelernt wurde, auf ein anderes Verhalten im Test übertragen. Dieses Resultat zeigt eindeutig, dass während der operanten Konditionierung klassische (CS-US) Assoziationen gebildet werden können. In einer Erweiterung dieses Ergebnisses zeigt sich, dass solch eine klassische Assoziation, wenn sie gebildet wird, die Bildung einer operanten Assoziation blockiert, die ohne operante Kontrolle der klassisch assoziierten Stimuli gebildet würde. Stattdessen scheint sich der operante Bestandteil weniger ausgeprägt zu entwickeln und ist eventuell in einer komplexen Dreiwege-Assoziation eingebunden. Die Dreiwege-Assoziation könnte entweder als sequentielle B-CS-US oder als hierarchische (B-CS)-US Assoziation implementiert sein. Der Vergleich einer einfachen klassischen (CS-US) mit einer komplexen operanten (B, CS und US) Lernsituation und einer einfachen operanten (B-US) mit einer anderen komplexen operanten (B, CS und US) Lernsituation, ermöglicht das Postulat einer Hierarchie der Prädiktoren für Verstärker. Operantes Verhalten während einer komplexen operanten Lernsituation wird wenig oder überhaupt nicht konditioniert. Die Assoziierbarkeit der klassischen Stimuli ohne Relation zum Verhalten des Tieres (CS-US) sind - wie operantes Verhalten alleine (B-US) auch - von mittlerer Assoziierbarkeit. Stimuli die von operantem Verhalten kon-trolliert werden, erhöhen am schnellsten ihre assoziative Stärke. Sind mehrere Stimuli während des Lernvorgangs zugänglich, stellt sich erneut die Frage, welche von den CS-US Assoziationen gebildet werden. Eine Vielzahl verschiedenster Studien in Vertebraten wiesen erstaunlich übereinstimmende Ergebnisse auf. Diese Ergebnisse inspirierten dazu, die Eigenschaften der CS-US Assoziationen in der komplexen Lernsituation am Flugsimulator zu untersuchen und mit Ergebnissen in Vertebraten zu vergleichen. Es wird erstmals gezeigt, dass Drosophila zusammengesetzte Stimuli lernen und die Einzelkomponenten unabhängig voneinander und in etwa ähnlichen Proportionen wiedererkennen kann. Der Versuch "Lernen zweiter Ordnung" mit diesen Stimuli zu erzielen, liefert einen relativ kleinen Effekt. Die Gegenüberstellung mit Daten aus Vertebraten liefert sowohl Abweichungen als auch Übereinstimmungen hinsichtlich der Lernregeln, die beim klassischen Konditionieren von Vertebraten gefunden wurden. Während es ein deutliches "sensorisches Präkonditionieren" gibt, konnte kein "Blocken" gefunden werden. Das sensorische Präkonditionieren in dieser Studie zeigt sich bei gleichzeitiger Stimuluspräsentation und ist vom Mass der Präkonditionierung abhängig. Es wird argumentiert, dass dieser Effekt ein Fall "beiläufigen Lernens" ist, bei dem zwei Stimuli ohne die Notwendigkeit der Verstärkung assoziiert werden. Für das nicht gefundene Blocken werden mögliche Gründe diskutiert und weiterführende Experimente vor-geschlagen. Abschließend wird über die Implikationen der Resultate dieser Arbeit für das allgemeine Verständnis der Gedächtnisbildung in komplexen Lernsituationen nachgedacht. KW - Taufliege KW - Lernen KW - Flugsimulator KW - Drosophila KW - Lernen KW - Gedächtnis KW - Assoziation KW - assoziativ KW - Flugsimulator KW - Lernregeln KW - operantes Konditionieren KW - klassisches Konditionieren KW - Drosophila KW - learning KW - memory KW - association KW - associative KW - flight simulator KW - learning rules KW - operant conditioning KW - classical conditioning Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-1039 ER - TY - JOUR A1 - Gruber, Hans A1 - Renkl, Alexander A1 - Schneider, Wolfgang T1 - Expertise und Gedächtnisentwicklung: Längsschnittliche Befunde aus der Domäne Schach N2 - Die vorliegende Arbeit ging zwei Hauptfragestellungen nach: (I) Inwiefern unterscheiden sich Experten in der Domäne Schach von Aussteigern aus der Expertisekarriere? (2) Wie verändern sich schachspezifische und generelle Gedächtnisparameter über einen Zeitraum von mehreren Jahren? Es wurden 27 Experten und Novizen mit einem durchschnittlichen Alter von knapp 12 Jahren zum ersten Meßzeitpunkt und von 16 Jahren zum zweiten Meßzeitpunkt untersucht. Die Aussteiger aus der Expertisekarriere zeigten bereits bei der Erstmessung schlechtere schachspezifische Gedächtnisleistungen als die übrigen Experten; die Annahme selektiver Aussteiger, die die Aussagekraft querschnittlicher Experten-Novizen-Vergleiche in Frage stellt, wird damit bestätigt. Sowohl für die Experten als auch für die Novizen zeigte sich ein Anstieg der schachspezifischen Gedächtnisleistung von der Erst- zur Zweitmessung. Während dafür bei Experten domänenspezifische Faktoren verantwortlich sein dürften, scheint dies bei Novizen auf die Entwicklung allgemeiner Gedächtnisparameter zurückzugehen. KW - Expertise KW - Gedächtnis KW - Schach Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87473 ER - TY - JOUR A1 - Hoffmann, Joachim T1 - Gedächtnis und Lernen, Prozeß und Resultat, Inzidentell und Intentional: eine Erwiderung auf den Kommentar von H. J. Markowitsch JF - Psychologische Rundschau N2 - No abstract available. KW - Gedächtnis KW - Lernpsychologie KW - Unterbewusstsein Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127719 SN - 0033-3042 VL - 44 IS - 2 ER - TY - CHAP A1 - Sodian, Beate A1 - Schneider, Wolfgang T1 - Gedächtnisentwicklung im Vorschulalter: "Theoriewandel" im kindlichen Verständnis des Lernens und Erinnerns? N2 - No abstract available. KW - Gedächtnis KW - Entwicklung KW - Vorschulkind Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87505 ER - TY - CHAP A1 - Schneider, Wolfgang A1 - Sodian, Beate T1 - Gedächtnisentwicklung im Vorschulalter: "Theoriewandel" im kindlichen Verständnis des Lernens und Erinnerns? N2 - No abstract available. KW - Entwicklungspsychologie KW - Pädagogische Psychologie KW - Gedächtnis Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87183 ER - TY - JOUR A1 - Schneider, Wolfgang A1 - Weinert, Franz E. T1 - Der Einfluß von Wissen auf das Behalten und Verstehen von Texten N2 - No abstract available. KW - Wissen KW - Gedächtnis KW - Text Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86495 ER - TY - JOUR A1 - Kurtz, Beth E. A1 - Schneider, Wolfgang T1 - The effects of age, study time, and importance of text units on strategy use and memory for texts N2 - This study investigated study behavior and recall of a narrative text as a function of the reader's age, study time, and importance level of text units. Fifth graders, seventh graders, young- and older adults were asked to read a fairy tale, and do anything they liked to prepare for verbatim recall. Half of the subjects in each age group were assigned to an immediate recall condition; half were given additional study time. Examination of recall data showed that all subjects showed higher recall of important units in the text than unimportant units. This effect was independent of age and study time condition. Study behaviors varied significantly across age groups and study conditions: while adults underlined or took notes with equal frequency, children preferred note-taking as a study strategy. With additional study time, fifth graders, seventh graders, and older adults increased their strategic behavior; young adults did not. KW - Studienzeit KW - Lebensalter KW - Gedächtnis Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87408 ER - TY - CHAP A1 - Knopf, Monika A1 - Körkel, Joachim A1 - Schneider, Wolfgang A1 - Weinert, Franz E. T1 - Human memory as a faculty versus human memory as a set of specific abilities: Evidence from a life-span approach N2 - No abstract available. KW - Gedächtnis Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87394 ER -