TY - THES A1 - Schäffler, Katrin M. T1 - Regulation der eukaryotischen Translation durch RNA-bindende Faktoren: Strukturelle und funktionelle Charakterisierung des La-verwandten Proteins 4B (LARP4B) T1 - Regulation of the eukaryotic translation by RNA-binding factors: structural and functional characterization of the La-related protein 4B (LARP4B) N2 - In Zellen liegen RNAs in Form von Ribonukleoprotein-Komplexen (RNP) vor, wobei das Zusammenwirken von RNA und Proteinen die Funktionen der einzelnen RNPs definiert. RNA-bindenden Proteinen kommt demnach eine zentrale Bedeutung beim Verständnis des RNA-Metabolismus zu. Zu dieser Proteingruppe zählen auch die La-verwandten Proteine (engl. La-related proteins, LARPs), welche eine evolutionär konservierte Familie von Faktoren bilden und durch eine putative RNA-bindende Domäne, dem La Modul, charakterisiert sind. Bereits für zwei Vertreter dieser Proteinklasse (LARP3 und LARP7) konnte eine über das La Modul vermittelte spezifische Interaktion mit uridylreichen RNA-Sequenzen gezeigt werden. Ziel dieser Arbeit war es, einen Vertreter der LARP-Familie, das sogenannte LARP4B, sowohl biochemisch als auch strukturell zu untersuchen und es somit einem zellulären Prozess zuzuordnen. Zellbiologische Studien zeigten zunächst, dass LARP4B unter normalen Wachstumsbedingungen eine homogene zytoplasmatische Verteilung aufweist. Unter Stressbedingungen akkumuliert LARP4B hingegen in diskreten subzellulären Domänen, den sogenannten Stress Granules (SGs). Obwohl SGs bislang noch wenig funktionell untersucht sind, wird davon ausgegangen, dass sie der reversiblen Speicherung von mRNA-gebundenen Translationsfaktoren dienen. Durch affinitätschromatographische Strategien ließen sich spezifische Interaktionspartner von LARP4B identifizieren. Als direkte Bindungspartner wurden das zytoplasmatische Poly (A) bindende Protein 1 (PABPC1) und der Rezeptor für aktivierte C Kinase 1 (RACK1) gefunden. Darüber hinaus zeigten Sedimentationsanalysen, dass LARP4B nahezu quantitativ mit Ribosomen und Polyribosomen assoziiert vorliegt. Diese Studie identifizierte daher LARP4B als ein Protein, das mit Schlüsselfaktoren der eukaryotischen Translation wechselwirkt. In Übereinstimmung mit diesen Befunden reduziert ein RNAi-induzierter Mangel des Proteins die Translationsrate drastisch, während die Überexpression von LARP4B in vivo zu einer Stimulation der Proteinbiosynthese führt. Da dieser stimulatorische Einfluss bei einer Vielzahl unterschiedlicher mRNA-Spezies detektiert werden konnte, kann LARP4B als genereller, positiver Translationsfaktor angesehen werden. Interessanterweise wurden in Studien, die zeitgleich für das verwandte LARP1 durchgeführt wurden, vergleichbare zelluläre Interaktionen wie für LARP4B beschrieben. Um zu klären, ob beide LARPs Orthologe darstellen und funktionelle Redundanz zeigen, wurde in der vorgelegten Arbeit ein Vergleich von LARP4B mit LARP1 durchgeführt. Unabhängige in vivo Studien und Sedimentationsanalysen zeigten deutlich, dass beide Proteine im mRNA-Metabolismus agieren, jedoch in diesem unterschiedliche Phasen der eukaryotischen Proteinbiosynthese beeinflussen. N2 - The cooperation of RNA with different classes of proteins in so called ribonucleoprotein complexes (RNPs) is essential for the function of these RNPs. Therefore, RNA-binding proteins play a crucial role to understand the complex mechanisms of RNA-metabolism. One family of such proteins comprise the La-related proteins (LARPs). These evolutionary conserved factors are characterized by a putative RNA-binding domain, named the La module. For two of these factors (LARP3 and LARP7) a specific interaction with RNA containing uridine-rich sequence elements mediated via their La module could be described. The present work describes the biochemical and structural characterization of LARP4B, a thus far uncharacterized member of the LARP family. Immunofluorescence analyses identified LARP4B as a cytosolic protein that accumulates upon arsenite treatment in cellular stress granules (SGs). While still not sufficiently determined, these domains are believed to serve as storage pools for stalled, mRNA-bound translation initiation complexes formed upon polyribosome disassembly. Biochemical experiments further uncovered an interaction of LARP4B with the Poly(A) binding protein cytosolic 1 (PABPC1) and the receptor for activated C Kinase 1 (RACK1). Moreover, under physiological conditions, LARP4B co-sediments almost quantitatively with polysomes in cellular extracts, suggesting a role in translation. In agreement with this notion, knockdown of LARP4B by RNA-interference impaired translation of cellular mRNAs whereas over-expression stimulated protein synthesis. As this stimulatory effect could be detected for a wide range of different mRNA-species, LARP4B hence represents a general stimulator of translation. Interestingly, parallel studies uncovered comparable cellular interactions for another LARP family member (LARP1). To test whether LARP4B and LARP1 represent orthologs possessing redundant function, these two factors have been compared in this work using several independent in vivo and in vitro studies. These data clearly showed that both proteins positively influence RNA-metabolism but influence different phases of protein biosynthesis. KW - Translation KW - Eukaryoten KW - Ribonucleoproteine KW - Regulation KW - LARP4B KW - La Protein KW - PABPC1 KW - RACK1 KW - translation KW - LARP4B KW - La protein KW - PABPC1 KW - RACK1 Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69809 ER - TY - THES A1 - Stingl, Nadja T1 - Regulation der Jasmonatbiosynthese durch Lipasen in Arabidopsis thaliana T1 - Regulation of the biosynthesis of jasmonates by lipases in Arabidopsis thaliana N2 - Lipasen regulieren die Biosynthese von Jasmonaten, die eine elementare Signalfunktion bei der Entwicklung von Pflanzen und der Abwehr von Pathogenen haben. Entsprechend dem klassischen „Vick-Zimmerman-Pathway“ dienen die aus Galaktolipiden freigesetzten Fettsäuren α-18:3 und 16:3 als Substrate der Jasmonsäure (JA)-Synthese. In den letzen zehn Jahren wurden jedoch die Intermediate der JA-Biosynthese 12-Oxo-Phytodiensäure (OPDA, ausgehend von α-18:3) und Dinor-12-Oxo-Phytodiensäure (dnOPDA, ausgehend von 16:3) verestert in Galaktolipiden der Art Arabidopsis thaliana nachgewiesen. Die Biosynthese und die mögiche Speicherfunktion dieser komplexen, als Arabidopside bezeichneten, Lipide war jedoch noch unklar. In der Literatur wird ein alternativer Syntheseweg postuliert, in dem analog zum klassischen „Vick-Zimmerman-Pathway“ die Biosynthese von veresterter OPDA/dnOPDA ausgehend von veresterter α-18:3/16:3 vollständig in Galaktolipiden der Pastidenmembran stattfindet. Nach Freisetzung von OPDA/dnOPDA durch eine Lipase könnten OPDA/dnOPDA dann als Intermediate in die JA-Biosynthese einfliessen. Sowohl im klassischen „Vick-Zimmerman-Pathway“ als auch im postulierten alternativen Syntheseweg ist die Aktivität von Lipasen von essentieller Bedeutung für die JA-Biosynthese. Für zwei plastidäre sn1-spezifische Acyl-Hydrolasen, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1) und DONGLE (DGL), wurde eine zentrale Funktion innerhalb der Jasmonat-Biosynthese in Blättern von A. thaliana beschrieben. Dem zufolge ist DGL für die basalen und die frühen wundinduzierten JA-Gehalte und DAD1 für die Aufrechterhaltung der erhöhten JA-Konzentrationen in der späteren Verwundungsantwort verantwortlich. In der vorliegenden Arbeit wiesen drei unabhängige DGL-RNAi-Linien sowie DAD1-Knock-out-Mutanten sowohl unter basalen Bedingungen als auch zu frühen Zeitpunkten nach Verwundung sowie nach Infektion mit dem Bakterienstamm P. syringae DC3000 (avrRPM1) mit dem Wildtyp vergleichbare Konzentrationen an OPDA/JA auf. Dies steht im klaren Widerspruch zu den publizierten Daten. Die Beteiligung von DAD1 an der OPDA/JA-Biosynthese zu späten Zeitpunkten nach Verwundung konnte jedoch bestätigt werden. Ferner konnte eine dramatische Über-Akkumulation von Arabidopsiden in DAD1-defizienten Mutanten nach Verwundung nachgewiesen werden, was auf eine Beteiligung von DAD1 bei der Freisetzung von membrangebundener OPDA/dnOPDA hinweist. Die Analyse der Einzelmutanten 16 weiterer plastidärer Lipasen unter basalen Bedingungen, nach Verwundung und nach Infektion mit P. syringae DC3000 (avrRPM1) zeigte, dass keine der analysierten Mutanten eine essentielle Rolle in der JA-Biosynthese spielt. Jedoch wiesen Mutanten der sn1-spezifischen Lipasen AtPLA1-Iγ1 (At1g06800) signifikant niedrigere Konzentrationen an dnOPDA, OPDA und JA nach Verwundung auf, was eine indirekte Beteiligung an der JA-Biosynthese vermuten lässt. Blattgewebe einer Quadrupel-Mutanten, welche defizient in vier DAD1-ähnlichen Lipasen (AtPLA1-Iβ2, AtPLA1-Iγ1, AtPLA1-Iγ2, AtPLA1-Iγ3) ist, wies nach Verwundung mit der AtPLA1-Iγ1-Mutante vergleichbar niedrige Gehalte an dnOPDA, OPDA sowie JA auf. Da stets in sn2-Position vorliegende 16:3/dnOPDA ebenfalls Substrat der JA-Biosynthese sein kann, müssen zusätzlich zu DAD1 und AtPLA1-Iγ1 noch weitere nicht identifizierte sn1- und sn2-spezifische Acyl-Hydrolasen an der JA-Biosynthese nach Verwundung und Pathogeninfektion beteiligt sein. Dies bedeutet, dass entgegen der in der Literatur vertretenen Meinung, nicht eine sondern mehrere Lipasen in redundanter Weise die Biosynthese von Jasmonaten regulieren. Zur Aufklärung der Biosynthese und möglichen Speicherfunktion der ausschließlich in Arabidopsis vorkommenden Arabidopside wurden A. thaliana Keimlinge mit D5-Linolensäure-Ethylester inkubiert, um eine D5-Markierung der komplexen Lipide zu erzielen. Durch einen anschließenden Stressstimulus mittels Zugabe von Silbernitrat wurde die Jasmonat-Synthese induziert. Die vergleichende Analyse der Markierungsgrade der komplexen Membranlipide MGDG, DGDG, PC sowie der freien OPDA und JA vor und nach Zugabe des Silbernitrats zeigte, eine hohe Übereinstimmung der Markierungsgrade der komplexen Membranlipide 18:3-18:3-MGDG, 18:3-OPDA-MGDG, Arabidopsid B (MGDG-OPDA-OPDA) und Arabidopsid G (OPDA-MGDG-OPDA-OPDA) vor der Silbernitratbehandlung mit denjenigen der durch Silbernitratbehandlung neu gebildeten OPDA/JA. Dagegen wird die hochmarkierte freie Linolensäure nicht direkt zu freier OPDA umgesetzt. Die erhaltenen Ergebnisse zeigen, dass 18:3-OPDA-MGDG, Arabidopsid B und Arabidopsid G direkte Vorstufen von freier OPDA sein können. Damit übereinstimmend konnte gezeigt werden, dass nach Silbernitratstress die Spiege der Vorstufe 18:3-18:3-MGDG abnehmen und zeitgleich die entsprechenden unmittelbaren Metabolite 18:3-OPDA-MGDG, Arabidopsid B und Arabidopsid G akkumulieren. N2 - Lipases regulate the biosynthesis of jasmonates. Jasmonates have an essential role in the development and defense of plants. According to the classical „Vick-Zimmerman-Pathway“ α-18:3/16:3 released by hydrolases out of galactolipids serve as substrate for the biosynthesis of jasmonic acid. In the last ten years also the metabolites of the biosynthesis of jasmonic acid OPDA (derived from α-18:3) and dnOPDA (derived from 16:3) were found to be esterified in galactolipids of arabidopsis. The synthesis and function of these complex lipids, named arabidopsides, is yet not known. An alternative Pathway is postulated in the literature. According to this the synthesis of dnOPDA/OPDA takes place in galactolipids. Free dnOPDA/OPDA released by hydrolases may then serve as substrates for the biosynthesis of jasmonic acid. In the classical „Vick-Zimmerman-Pathway“ as well as in the alternative Pathway the activity of lipases have an essential impact on the biosynthesis of jasmonates. Two plastidic acyl-hydrolases with sn1-substrate specificity, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1) and DONGLE (DGL), were published to have a essential role in the biosynthesis of jasmonates in leaves of Arabidopsis thaliana. DGL should be responsible for the formation of jasmonic acid under basal conditions and at early timepoints after wounding, DAD1 should maintain the elevated concentrations of jasmonic acid at later timepoints after wounding. In this work the involvement of DAD1 in the biosynthesis of OPDA/JA at later timepoints after wounding was confirmed. However, no differences could be detected in three independent DGL-RNAi-lines and DAD1-knock-out-mutants in comparison to the wild type under basal conditions and at early timepoints after wounding which is contradictory to the published data. In addition, in these mutants wild type oxylipin levels were found after infection with an avirulent bacterial strain of Pseudomonas syringae. Furthermore DAD1-deficient mutants displayed dramatic accumulation of arabidopsides at later timepoints after wounding. Therefore it is suspected that DAD1 is responsible for the release of OPDA esterified in galactolipids. The analysis of single mutants of 16 additional lipases localised in plastids showed no strong differences in comparison to the wildtype under basal conditions, after wounding as well as after infection with P. syringae. Hence, none of the tested lipases plays an essential role in the biosynthesis of jasmonates. However mutants of the sn1-specific acyl-hydrolase AtPLA1-Iγ1 (At1g06800) showed significant lower concentrations of dnOPDA, OPDA and JA after wounding in comparison to the wildtype. This indicates an involvement of AtPLA1-Iγ1 in the biosynthesis of jasmontes. A quadruple mutant defective in four DAD1-like lipases (AtPLA1-Iβ2, AtPLA1-Iγ1, AtPLA1-Iγ2, AtPLA1-Iγ3) displayed jasmonate levels similar to the mutant line of AtPLA1-Iγ1 after wounding. The lipids 16:3/dnOPDA are always esterified in sn2 position of glycerolipids. Furthermore 16:3/dnOPDA may also serve as substrates for the biosynthesis of jasmonic acid. The results suggest that, in addition to DAD1 and AtPLA1-Iγ1, still unidentified enzymes with sn1- and sn2-hydrolase activity are involved in wound- and pathogen-induced jasmonate formation, indicating functional redundancy within the lipase family. To clarify the biosynthesis and storage function of arabidopsides, seedlings of A.thaliana were incubated with D5-linolenic acid ethyl ester to produce labelling of complex membrane lipids. Subsequent application of silver nitrate induced the biosynthesis of jasmonates. The analysis of the complex lipids MGDG, DGDG, PC as well as OPDA/JA before and after treatment with silver nitrate showed a high consistency of labelling of the complex lipids 18:3-18:3-MGDG, 18:3-OPDA-MGDG, arabidopside B (OPDA-OPDA-MGDG) as well as arabidopside G (OPDA-OPDA-MGDG-OPDA) before application of silver nitrate with labelling of the newly synthesised OPDA/JA induced by treatment with silver nitrate. The results suggest, that MGDG-18:3-18:3, 18:3-OPDA-MGDG, arabidopsid B and arabidopsid G are precursors or metabolites of free OPDA, which is a precursor of JA. Furthermore, simultaneous decrease of 18:3-18:3-MGDG and concomitant increase of arabidopsid B and arabidopsid G after application of silver nitrate could be shown. This suggests synthesis of OPDA/dnOPDA in-situ via the alternative pathway. KW - Lipasen KW - Jasmonate KW - Stoffwechselweg KW - Regulation KW - Ackerschmalwand KW - Jasmonatbiosynthese KW - Arabidopsis thaliana KW - Arabidopside KW - Lipases KW - Jasmonates KW - Biosynthesis of Jasmonates KW - Arabidopsis thaliana KW - Arabidopsides Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56393 ER -