TY - JOUR A1 - Palladino, Viola Stella A1 - Chiocchetti, Andreas G. A1 - Frank, Lukas A1 - Haslinger, Denise A1 - McNeill, Rhiannon A1 - Radtke, Franziska A1 - Till, Andreas A1 - Haupt, Simone A1 - Brüstle, Oliver A1 - Günther, Katharina A1 - Edenhofer, Frank A1 - Hoffmann, Per A1 - Reif, Andreas A1 - Kittel-Schneider, Sarah T1 - Energy metabolism disturbances in cell models of PARK2 CNV carriers with ADHD JF - Journal of Clinical Medicine N2 - The main goal of the present study was the identification of cellular phenotypes in attention-deficit-/hyperactivity disorder (ADHD) patient-derived cellular models from carriers of rare copy number variants (CNVs) in the PARK2 locus that have been previously associated with ADHD. Human-derived fibroblasts (HDF) were cultured and human-induced pluripotent stem cells (hiPSC) were reprogrammed and differentiated into dopaminergic neuronal cells (mDANs). A series of assays in baseline condition and in different stress paradigms (nutrient deprivation, carbonyl cyanide m-chlorophenyl hydrazine (CCCP)) focusing on mitochondrial function and energy metabolism (ATP production, basal oxygen consumption rates, reactive oxygen species (ROS) abundance) were performed and changes in mitochondrial network morphology evaluated. We found changes in PARK2 CNV deletion and duplication carriers with ADHD in PARK2 gene and protein expression, ATP production and basal oxygen consumption rates compared to healthy and ADHD wildtype control cell lines, partly differing between HDF and mDANs and to some extent enhanced in stress paradigms. The generation of ROS was not influenced by the genotype. Our preliminary work suggests an energy impairment in HDF and mDAN cells of PARK2 CNV deletion and duplication carriers with ADHD. The energy impairment could be associated with the role of PARK2 dysregulation in mitochondrial dynamics. KW - ADHD KW - hiPSC KW - PARK2 KW - mitochondria KW - disease modelling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220074 SN - 2077-0383 VL - 9 IS - 12 ER - TY - JOUR A1 - Ziegler, Georg C. A1 - Radtke, Franziska A1 - Vitale, Maria Rosaria A1 - Preuße, André A1 - Klopocki, Eva A1 - Herms, Stefan A1 - Lesch, Klaus-Peter T1 - Generation of multiple human iPSC lines from peripheral blood mononuclear cells of two SLC2A3 deletion and two SLC2A3 duplication carriers JF - Stem Cell Research N2 - Copy number variants of SLC2A3, which encodes the glucose transporter GLUT3, are associated with several neuropsychiatric and cardiac diseases. Here, we report the successful reprogramming of peripheral blood mononuclear cells from two SLC2A3 duplication and two SLC2A3 deletion carriers and subsequent generation of two transgene-free iPSC clones per donor by Sendai viral transduction. All eight clones represent bona fide hiPSCs with high expression of pluripotency genes, ability to differentiate into cells of all three germ layers and normal karyotype. The generated cell lines will be helpful to enlighten the role of glucometabolic alterations in pathophysiological processes shared across organ boundaries. KW - congenital heart-deffects KW - transporter gene SLC2A3 KW - copy-number variation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264696 VL - 56 ER - TY - JOUR A1 - McNeill, Rhiannon V. A1 - Ziegler, Georg C. A1 - Radtke, Franziska A1 - Nieberler, Matthias A1 - Lesch, Klaus‑Peter A1 - Kittel‑Schneider, Sarah T1 - Mental health dished up — the use of iPSC models in neuropsychiatric research JF - Journal of Neural Transmission N2 - Genetic and molecular mechanisms that play a causal role in mental illnesses are challenging to elucidate, particularly as there is a lack of relevant in vitro and in vivo models. However, the advent of induced pluripotent stem cell (iPSC) technology has provided researchers with a novel toolbox. We conducted a systematic review using the PRISMA statement. A PubMed and Web of Science online search was performed (studies published between 2006–2020) using the following search strategy: hiPSC OR iPSC OR iPS OR stem cells AND schizophrenia disorder OR personality disorder OR antisocial personality disorder OR psychopathy OR bipolar disorder OR major depressive disorder OR obsessive compulsive disorder OR anxiety disorder OR substance use disorder OR alcohol use disorder OR nicotine use disorder OR opioid use disorder OR eating disorder OR anorexia nervosa OR attention-deficit/hyperactivity disorder OR gaming disorder. Using the above search criteria, a total of 3515 studies were found. After screening, a final total of 56 studies were deemed eligible for inclusion in our study. Using iPSC technology, psychiatric disease can be studied in the context of a patient’s own unique genetic background. This has allowed great strides to be made into uncovering the etiology of psychiatric disease, as well as providing a unique paradigm for drug testing. However, there is a lack of data for certain psychiatric disorders and several limitations to present iPSC-based studies, leading us to discuss how this field may progress in the next years to increase its utility in the battle to understand psychiatric disease. KW - hiPSC KW - iPSC KW - stem cells KW - mental disorders KW - affective disorders KW - ADHD Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235666 SN - 0300-9564 VL - 127 ER -