TY - JOUR A1 - Adam, Alexander A1 - Deimel, Stephan A1 - Pardo-Medina, Javier A1 - García-Martínez, Jorge A1 - Konte, Tilen A1 - Limón, M. Carmen A1 - Avalos, Javier A1 - Terpitz, Ulrich T1 - Protein activity of the \(Fusarium\) \(fujikuroi\) rhodopsins CarO and OpsA and their relation to fungus−plant interaction JF - International Journal of Molecular Sciences N2 - Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus. KW - fungal rhodopsins KW - CarO KW - OpsA KW - Fusarium fujikuroi KW - Oryza sativa KW - rice–plant infection KW - green light perception KW - indole-3-acetic acid (IAA) KW - bakanae KW - patch-clamp Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285125 SN - 1422-0067 VL - 19 IS - 1 ER - TY - JOUR A1 - García-Martínez, Jorge A1 - Brunk, Michael A1 - Avalos, Javier A1 - Terpitz, Ulrich T1 - The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination JF - Scientific Reports N2 - Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO\(^{-}\) mutant and carO\(^{+}\) control strains showed a faster development of light-exposed carO-germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin. KW - microbial rhodopsins KW - intracellular pH KW - membrane proteins KW - mutants KW - virulence KW - channelrhodopsin-2 KW - growth KW - gene KW - expression KW - bacteriorhodopsin Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149049 VL - 5 IS - 7798 ER -