TY - JOUR A1 - Armbruster, Nicole A1 - Krieg, Jennifer A1 - Weißenberger, Manuel A1 - Scheller, Carsten A1 - Steinert, Andre F. T1 - Rescued Chondrogenesis of Mesenchymal Stem Cells under Interleukin 1 Challenge by Foamyviral Interleukin 1 Receptor Antagonist Gene Transfer JF - Frontiers in Pharmacology N2 - Background: Mesenchymal stem cells (MSCs) and their chondrogenic differentiation have been extensively investigated in vitro as MSCs provide an attractive source besides chondrocytes for cartilage repair therapies. Here we established prototype foamyviral vectors (FVV) that are derived from apathogenic parent viruses and are characterized by a broad host range and a favorable integration pattern into the cellular genome. As the inflammatory cytokine interleukin 1 beta (IL1β) is frequently present in diseased joints, the protective effects of FVV expressing the human interleukin 1 receptor antagonist protein (IL1RA) were studied in an established in vitro model (aggregate culture system) of chondrogenesis in the presence of IL1β. Materials and Methods: We generated different recombinant FVVs encoding enhanced green fluorescent protein (EGFP) or IL1RA and examined their transduction efficiencies and transgene expression profiles using different cell lines and human primary MSCs derived from bone marrow-aspirates. Transgene expression was evaluated by fluorescence microscopy (EGFP), flow cytometry (EGFP), and ELISA (IL1RA). For evaluation of the functionality of the IL1RA transgene to block the inhibitory effects of IL1β on chondrogenesis of primary MSCs and an immortalized MSC cell line (TERT4 cells), the cells were maintained following transduction as aggregate cultures in standard chondrogenic media in the presence or absence of IL1β. After 3 weeks of culture, pellets were harvested and analyzed by histology and immunohistochemistry for chondrogenic phenotypes. Results: The different FVV efficiently transduced cell lines as well as primary MSCs, thereby reaching high transgene expression levels in 6-well plates with levels of around 100 ng/ml IL1RA. MSC aggregate cultures which were maintained in chondrogenic media without IL1β supplementation revealed a chondrogenic phenotype by means of strong positive staining for collagen type II and matrix proteoglycan (Alcian blue). Addition of IL1β was inhibitory to chondrogenesis in untreated control pellets. In contrast, foamyviral mediated IL1RA expression rescued the chondrogenesis in pellets cultured in the presence of IL1β. Transduced MSC pellets reached thereby very high IL1RA transgene expression levels with a peak of 1087 ng/ml after day 7, followed by a decrease to 194 ng/ml after day 21, while IL1RA concentrations of controls were permanently below 200 pg/ml. Conclusion: Our results indicate that FVV are capable of efficient gene transfer to MSCs, while reaching IL1RA transgene expression levels, that were able to efficiently block the impacts of IL1β in vitro. FVV merit further investigation as a means to study the potential as a gene transfer tool for MSC based therapies for cartilage repair. KW - mesenchymal stem cell KW - chondrogenesis KW - pellet culture KW - foamy virus KW - virus vectors KW - IL1RA KW - interleukin 1 receptor antagonist KW - arthritis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170919 VL - 8 IS - 255 ER - TY - JOUR A1 - Schmalzl, Jonas A1 - Plumhoff, Piet A1 - Gilbert, Fabian A1 - Gohlke, Frank A1 - Konrads, Christian A1 - Brunner, Ulrich A1 - Jakob, Franz A1 - Ebert, Regina A1 - Steinert, Andre F. T1 - Tendon-derived stem cells from the long head of the biceps tendon JF - Bone & Joint Research N2 - Objectives The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. Methods In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions. Results Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis. Conclusion These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery. KW - biceps tendon KW - tendon-derived stem cell KW - mesenchymal stem cell KW - tissue engineering KW - shoulder Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200370 VL - 8 IS - 9 ER -