TY - THES A1 - Gabel, Judith T1 - Interface Engineering of Functional Oxides: A Photoemission Study T1 - Kontrollierte Manipulation der Grenzflächen in funktionellen oxidischen Heterostrukturen: Eine Photoemissionsstudie N2 - Due to their complex chemical structure transition metal oxides display many fascinating properties which conventional semiconductors lack. For this reason transition metal oxides hold a lot of promise for novel electronic functionalities. Just as in conventional semiconductor heterostructures, the interfaces between different materials play a key role in oxide electronics. The textbook example is the (001) interface between the band insulators LaAlO\(_3\) and SrTiO\(_3\) at which a two-dimensional electron system (2DES) forms. In order to utilize such a 2DES in prospective electronic devices, it is vital that the electronic properties of the interface can be controlled and manipulated at will. Employing photoelectron spectroscopy as well as electronic transport measurements, this thesis examines how such interface engineering can be realized in the case of the LaAlO\(_3\)/SrTiO\(_3\) heterostructure: By photoemission we manage to unambiguously distinguish the different mechanisms by which SrTiO\(_3\) can be doped with electrons. An electronic reconstruction is identified as the driving mechanism to render stoichiometric LaAlO\(_3\)/SrTiO\(_3\) interfaces metallic. The doping of the LaAlO\(_3\)/SrTiO\(_3\) heterointerface can furthermore be finely adjusted by changing the oxygen vacancy \(V_{\mathrm{O}}\) concentration in the heterostructure. Combining intense x-ray irradiation with oxygen dosing, we even achieve control over the \(V_{\mathrm{O}}\) concentration and, consequently, the doping in the photoemission experiment itself. Exploiting this method, we investigate how the band diagram of SrTiO\(_3\)-based heterostructures changes as a function of the \(V_{\mathrm{O}}\) concentration and temperature by hard x-ray photoemission spectroscopy. With the band bending in the SrTiO\(_3\) substrate changing as a function of the \(V_{\mathrm{O}}\) concentration, the interfacial band alignment is found to vary as well. The relative permittivity of the SrTiO\(_3\) substrate and, in particular, its dependence on temperature and electric field is identified as one of the essential parameters determining the electronic interface properties. That is also why the sample temperature affects the charge carrier distribution. The mobile charge carriers are shown to shift toward the SrTiO\(_3\) bulk when the sample temperature is lowered. This effect is, however, only pronounced if the total charge carrier concentration is small. At high charge carrier concentrations the charge carriers are always confined to the interface, independent of the sample temperature. The dependence of the electronic interface properties on the \(V_{\mathrm{O}}\) concentration is also investigated by a complementary method, viz. by electronic transport measurements. These experiments confirm that the mobile charge carrier concentration increases concomitantly to the \(V_{\mathrm{O}}\) concentration. The mobility of the charge carriers changes as well depending on the \(V_{\mathrm{O}}\) concentration. Comparing spectroscopy and transport results, we are able to draw conclusions about the processes limiting the mobility in electronic transport. We furthermore build a memristor device from our LaAlO\(_3\)/SrTiO\(_3\) heterostructures and demonstrate how interface engineering is used in practice in such novel electronic applications. This thesis furthermore investigates how the electronic structure of the 2DES is affected by the interface topology: We show that, akin to the (001) LaAlO\(_3\)/SrTiO\(_3\) heterointerface, an electronic reconstruction also renders the (111) interface between LaAlO\(_3\) and SrTiO\(_3\) metallic. The change in interface topology becomes evident in the Fermi surface of the buried 2DES which is probed by soft x-ray photoemission. Based on the asymmetry in the Fermi surface, we estimate the extension of the conductive layer in the (111)-oriented LaAlO\(_3\)/SrTiO\(_3\) heterostructure. The spectral function measured furthermore identifies the charge carriers at the interface as large polarons. N2 - Aufgrund ihrer komplexen chemischen Struktur weisen Übergangsmetalloxide viele faszinierende Eigenschaften auf, die konventionelle Halbleitermaterialien entbehren und die Potenzial für neuartige elektronische Funktionalitäten bergen. Genauso wie in konventionellen Halbleiterstrukturen kommt dabei den Grenzflächen zwischen den Materialien besondere Bedeutung zu. In der Oxid-Elektronik ist ein Paradebeispiel hierfür die (001)-Grenzfläche zwischen den Bandisolatoren LaAlO\(_3\) und SrTiO\(_3\), an der sich ein zweidimensionales Elektronensystem (2DES) ausbildet. Um solche Elektronensysteme zukünftig in elektronischen Anwendungen zu nutzen, ist es jedoch unabdingbar, dass die elektronischen Eigenschaften der Grenzfläche gezielt kontrolliert und manipuliert werden können. Mittels Photoelektronenspektroskopie sowie Transportmessungen untersucht diese Arbeit am Beispiel der LaAlO\(_3\)/SrTiO\(_3\)-Grenzfläche, wie eine derartige Kontrolle realisiert werden kann. Mithilfe von Photoemissionsexperimenten gelingt es, verschiedene Mechanismen zu unterscheiden, mit denen SrTiO\(_3\) dotiert werden kann. In stöchiometrischen LaAlO\(_3\)/SrTiO\(_3\)-Heterostrukturen kann so die elektronische Rekonstruktion als treibender Mechanismus identifiziert werden, der zur Ausbildung der leitfähigen Grenzschicht führt. Die Dotierung der LaAlO\(_3\)/SrTiO\(_3\)-Heterostruktur kann weiterhin auch durch die kontrollierte Erzeugung von Sauerstofffehlstellen \(V_{\mathrm{O}}\) gezielt gesteuert werden. Die \(V_{\mathrm{O}}\)-Konzentration kann sogar während der Photoemissionsexperimente zielgerichtet variiert werden, wenn die Bestrahlung mit intensivem Röntgenlicht mit einer Sauerstoffbehandlung kombiniert wird. Diese Methode nutzen wir in Folge aus, um in Photoemissionsmessungen mit harter Röntgenstrahlung systematisch zu untersuchen, wie sich das Banddiagramm von SrTiO\(_3\)-basierten Heterostrukturen als Funktion der \(V_{\mathrm{O}}\)-Konzentration und Temperatur ändert. Wir zeigen, dass sich parallel zur Bandverbiegung im SrTiO\(_3\)-Substrat auch die Bandanordnung an der Grenzfläche als Funktion der \(V_{\mathrm{O}}\)-Konzentration ändert. Dabei stellt sich heraus, dass die dielektrische Funktion des SrTiO\(_3\)-Substrats - insbesondere durch ihre starke Abhängigkeit vom elektrischen Feld und Temperatur - maßgeblich die elektronischen Eigenschaften der Grenzfläche bestimmt. Aus diesem Grund hat die Temperatur der Probe Einfluss auf die Ladungsträgerverteilung. Die mobilen Ladungsträger verschieben sich weg von der Grenzfläche tiefer in das Substrat, je niedriger die Temperatur gewählt wird. Dieser Effekt ist jedoch nur bei niedriger Dotierung zu beobachten. Bei hoher Dotierung ist das zweidimensionale Elektronensystem unabhängig von der Temperatur nahe der Grenzfläche lokalisiert. Die Abhängigkeit der elektronischen Eigenschaften von der \(V_{\mathrm{O}}\)-Konzentration wird auch komplementär im elektronischen Transport untersucht. Auch hier steigt die Ladungsträgerdichte simultan zur \(V_{\mathrm{O}}\)-Konzentration. Zugleich ändert sich auch die Mobilität der Ladungsträger. Der direkte Vergleich von Spektroskopie- und Transportmessungen erlaubt Rückschlüsse auf die Prozesse, die die Ladungsträgermobilität begrenzen. Am Beispiel eines LaAlO\(_3\)/SrTiO\(_3\)-basierten Memristors wird darüber hinaus praktisch demonstriert, wie die Kontrolle über die Grenzfläche in neuartigen elektronischen Anwendungen tatsächlich eingesetzt werden kann. Ferner untersucht diese Arbeit, wie die Topologie der Grenzfläche die elektronische Struktur des 2DES beeinflusst: Wir weisen nach, dass analog zur (001)-Grenzfläche auch die (111)-Grenzfläche zwischen LaAlO\(_3\) und SrTiO\(_3\) durch eine elektronische Rekonstruktion dotiert wird. Die Änderung in der Grenzflächentopologie zeigt sich deutlich in der Fermifläche des vergrabenen 2DES, die mittels resonanter Photoemission untersucht wird. Anhand der Asymmetrie der Fermifläche wird überdies die Ausdehnung des Elektronensystems abgeschätzt, wohingegen die Spektralfunktion Hinweise auf die Elektron-Phonon-Kopplung an der Grenzfläche liefert. KW - Übergangsmetalloxide KW - Grenzfläche KW - Strontiumtitanat KW - Heterostruktur KW - Röntgen-Photoelektronenspektroskopie KW - oxide heterostructure KW - interface conductivity KW - oxygen vacancies KW - LaAlO3/SrTiO3 KW - hard x-ray photoemission KW - soft x-ray photoemission Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192275 ER - TY - THES A1 - Hauschild, Dirk T1 - Electron and soft x-ray spectroscopy of indium sulfide buffer layers and the interfaces in Cu(In,Ga)(S,Se)2-based thin-film solar cells T1 - Elektronen- und Weichröntgenemissionsspektroskopie von Indiumsulfid-Pufferschichten und Grenzflächen in Cu(In,Ga)(S,Se)2-basierten Dünnschichtsolarzellen N2 - In this thesis, thin-film solar cells on the basis of Cu(In,Ga)(S,Se)2 (CIGSSe) were investigated. Until today, most high efficient CIGSSe-based solar cells use a toxic and wetchemical deposited CdS buffer layer, which doesn’t allow a dry inline production. However, a promising and well-performing alternative buffer layer, namely indium sulfide, has been found which doesn’t comprise these disadvantages. In order to shed light on these well-performing devices, the surfaces and in particular the interfaces which play a major role for the charge carrier transport are investigated in the framework of this thesis. Both, the chemical and electronic properties of the solar cells’ interfaces were characterized. In case of the physical vapor deposition of an InxSy-based buffer layer, the cleaning step of the CdS chemical-bath deposition is not present and thus changes of the absorber surface have to be taken into account. Therefore, adsorbate formation, oxidation, and segregation of absorber elements in dependence of the storing temperature and the humidity are investigated in the first part of this thesis. The efficiencies of CIGSSe-based solar cells with an InxSy buffer layer depend on the nominal indium concentration x and display a maximum for x = 42 %. In this thesis, InxSy samples with a nominal indium concentration of 40.2% ≤ x ≤ 43.2% were investigated by surface-sensitive and surface-near bulk-sensitive techniques, namely with photoemission spectroscopy (PES) and x-ray emission spectroscopy (XES). The surfaces of the films were found to be sulfur-poor and indium-rich in comparison with stoichiometric In2S3. Moreover, a direct determination of the band alignment at the InxSy/CISSe interface in dependence of the nominal indium concentration x was conducted with the help of PES and inverse PES (IPES) and a flat band alignment was found for x = 42 %. In order to study the impact of a heat treatment as it occurs during subsequent cell process steps, the indium sulfide-buffered absorbers were annealed for 30 minutes under UHV conditions at 200 °C after the initial data set was taken. Besides a reported enhanced solar cell performance, a significant copper diffusion from the absorber into the buffer layer takes place due to the thermal treatment. Accordingly, the impact of the copper diffusion on the hidden InxSy/CISSe interface was discussed and for x = 40.2% a significant cliff (downwards step in the conduction band) is observed. For increasing x, the alignment in the conduction band turns into a small upwards step (spike) for the region 41% ≤ x ≤ 43.2%. This explains the optimal solar cell performance for this indium contents. In a further step, the sodium-doped indium sulfide buffer which leads to significantly higher efficient solar cells was investigated. It was demonstrated by PES/IPES that the enhanced performance can be ascribed to a significant larger surface band gap in comparison with undoped InxSy. The occurring spike in the Na:InxSy/CISSe band alignment gets reduced due to a Se diffusion induced by the thermal treatment. Furthermore, after the thermal treatment the sodium doped indium sulfide layer experiences a copper diffusion which is reduced by more than a factor of two compared to pure InxSy. Next, the interface between the Na:InxSy buffer layer and the i-ZnO (i = intrinsic, non-deliberately doped), as a part of the transparent front contact was analyzed. The i-ZnO/Na:InxSy interface shows significant interdiffusion, leading to the formation of, e.g., ZnS and hence to a reduction of the nominal cliff in the conduction band alignment. In the last part of this thesis, the well-established surface-sensitive reflective electron energy loss spectroscopy (REELS) was utilized to study the CIGSSe absorber, the InxSy buffer, and annealed InxSy buffer surfaces. By fitting the characteristic inelastic scattering cross sections λK(E) with Drude-Lindhard oscillators the dielectric function was identified. The determined dielectric functions are in good agreement with values from bulk-sensitive optical measurements on indium sulfide layers. In contrast, for the chalcopyrite-based absorber significant differences appear. In particular, a substantial larger surface band gap of the CIGSSe surface of E^Ex_Gap = (1.4±0.2) eV in comparison with bulk values is determined. This provides for the first time an independent verification of earlier PES/IPES results. Finally, the electrons’ inelastic mean free paths l for the three investigated surfaces are compared for different primary energies with theoretical values and the universal curve. N2 - Die vorliegende Arbeit untersucht Dünnschichtsolarzellen auf Basis von Cu(In,Ga)(S,Se)2 (CIGSSe). Um hohe Effizienzen bei CIGSSe-basierten Solarzellen zu erreichen, wurde bisher meist eine toxische und schlecht in einen Vakuumprozess integrierbare nasschemische CdS Pufferschicht verwendet. Mit Indiumsulfid konnte stattdessen eine vielversprechende alternative Pufferschicht gefunden werden, die diese nachteiligen Eigenschaften von CdS nicht aufweist und Solarzellen mit diesem Puffermaterial zeigen gute bis sehr gute Wirkungsgrade. Um die Ursachen der guten Leistungen herauszufinden, wurden die in der Solarzelle vorkommenden Oberflächen und Grenzflächen, die für den Ladungstransport eine zentrale Rolle spielen, Schritt für Schritt als Modellsysteme charakterisiert. Für einen InxSy-basierten Puffer, der durch die physikalische Gasphasenabscheidung aufgebracht wird, fehlt der Reinigungsprozess der Absorberoberflächen durch die nasschemische CdS Abscheidetechnik. Deshalb müssen Adsorbatbildung, Oxidation und Segregation von Absorberelementen die innerhalb der ersten Tage nach der Herstellung auftreten (je nach Feuchtigkeitsgehalt und Temperatur der Umgebung) berücksichtigt werden. Im ersten Teil der Arbeit werden solche Einflüsse auf die Oberfläche des Absorbers untersucht. Zellen mit einem Indiumsulfidpuffer zeigen Wirkungsgrade, die von der nominellen Indiumkonzentration x abhängen und bei x = 42% ein Optimum aufweisen. Eine stöchiometrische Analyse der InxSy Oberflächen ergab für 40.2% ≤ x ≤ 43.2% eine schwefelarme bzw. indiumreiche Oberfläche im Vergleich zu stöchiometrischem In2S3 (40% In und 60% S). Allerdings zeigen die untersuchten Proben für verschiedene Indiumkonzentrationen im Rahmen der oberflächensensitiven Photoemission (PES) und volumensensitiven Röntgenemission (XES) keine quantitativen Unterschiede. Mit Hilfe der PES und inversen PES (IPES) wurde der Bandverlauf an der InxSy/CISSe Grenzfläche in Abhängigkeit von der Indiumkonzentration untersucht und für x = 42% konnte ein flacher Bandverlauf ermittelt werden. Um den Einfluss des im Herstellungsprozess vorkommenden Temperaturschritts zu untersuchen, wurden die Proben für 30 Minuten auf 200 °C geheizt. Dabei konnte eine signifikante Diffusion von Kupfer aus dem Absorber in den Puffer beobachtet werden. Der Temperaturschritt führt neben der bereits bekannten Effizienzerhöhung vor allem zu einer Verringerung der Bandlücke des Puffers. Der Einfluss der Kupferdiffusion auf die verborgene InxSy/CISSe Grenzfläche wurde analysiert und für x = 40:2% wurde ein deutlicher "Cliff" (Stufe im Leitungsband nach unten) gefunden. Für Indiumkonzentrationen 41% ≤ x ≤ 43.2% wurde ein kleiner "Spike" (Stufe im Leitungsband nach oben) identifiziert, was dabei im Einklang mit den optimalen Wirkungsgraden ist. In einem weiteren Schritt wurde ein mit Natrium dotierter Indiumsulfidpuffer Na:InxSy, der verbesserte Wirkungsgrade zeigt, untersucht. Diese konnte zum einen auf eine deutlich vergrößerte Oberflächenbandlücke des Puffers zurückgeführt werden. Zum anderen wurde nach dem Temperaturschritt im Vergleich zu dem InxSy Puffer eine um den Faktor zwei verringerte Kupferdiffusion an der Oberfläche festgestellt. Des Weiteren konnte bei dem Temperaturschritt eine Diffusion von Selen festgestellt werden, die den vor dem Temperaturschritt vorhandenen "Spike" im Leitungsbandverlauf verringert. Nach dem Aufbringen der i-ZnO Schicht (i = intrinsisch, nicht absichtlich dotiert) als Teil des Frontkontakts auf den Na:InxSy Puffer, wurden Durchmischungseffekte an der i-ZnO/Na:InxSy Grenzfläche gefunden. Im weiteren Verlauf zeigte sich, dass der nominell auftretende "Cliff" zwischen i-ZnO und Na:InxSy durch die Bildung von ZnS reduziert bzw. vernachlässigt werden kann. Im letzten Teil der Arbeit wurde die etablierte oberflächensensitive reflektive Elektronenenergieverlustspektroskopie auf die Absorber- sowie Indiumsulfidoberflächen angewandt. Die ermittelten inelastisch gestreuten Verlustspektren λK(E) wurden mit dem Drude-Lindhard Modell simuliert und somit die dielektrische Funktion der jeweiligen Oberflächen bestimmt. Ein Vergleich mit volumensensitiven optischen Werten zeigt für die InxSy Schichten eine gute Übereinstimmung. Bei der CIGSSe Oberfläche konnten hingegen signifikante Unterschiede festgestellt werden. Dabei wurde erstmals die Oberflächenbandlücke eines Cu(In,Ga)(S,Se)2 Absorbers unabhängig von PES/IPES zu E^Ex_Gap = (1.4 ±0.2) eV verifiziert. Abschließend wurden die mittleren freien Weglängen der Elektronen l für die drei untersuchten Oberflächen für unterschiedliche Energien mit theoretischen Werten und der universellen Kurve verglichen. KW - Photoelektronenspektroskopie KW - Dünnschichtsolarzelle KW - Elektronische Eigenschaften KW - semiconductor interfaces KW - inverse photoemission KW - photoelectron spectroscopy KW - x-ray emission KW - Halbleitergrenzflächen KW - Photoelektronenspektroskopie KW - Röntgenemission KW - Solarzellen KW - Grenzfläche KW - Oberfläche Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126766 ER - TY - THES A1 - Häming, Marc T1 - Electronic Many-Body Effects in organic Thin-Films and Interfaces T1 - Elektronische Vielteilcheneffekte in dünnen organischen Filmen und an organischen Grenzflächen N2 - The results of this thesis contribute to the understanding of the electronic properties of organic thin-films and interfaces. It is demonstrated that photoemission spectroscopy is very useful for studying surfaces and interfaces. Additionally it is shown, that many-body effects can be relevant for organic thin films, in particular at interfaces with strong interaction. These effects can have general implications for the material properties. In the first part of this thesis a systematic series of polyacene molecules is investigated with NEXAFS spectroscopy. The comparison of the data with core level and IPES data indicates that core excitations and core excitons need to be understood as many-body excitations. This finding implies for example that a high exciton binding energy is not necessarily associated with strong localization of the excited electron at the hole. As these effects apply also for valence excitons they can be relevant for the separation of charges and for the electron-hole recombination at interfaces. In the next chapter some fundamental effects in organic multilayer films and at organic-metal interfaces are studied with core level and NEXAFS spectroscopy. In this context a series of selected molecules is investigated, namely BTCDA, BTCDI, PTCDA and PTCDI. It is shown that in case of strong interface interaction a density of adsorbate-substrate states is formed which can lead to significant charge transfer satellites in the PES and NEXAFS spectra, similar to what is known for transition metal compounds. Moreover, it is demonstrated that the data can be modeled qualitatively by a basic approach which fuses the single impurity Anderson model with the description of charge transfer satellites by Sawatzky et al. This approach, which is equivalent to that of Gunnarsson and Schönhammer, allows even a relatively simple semi-quantitative analysis of the experimental data. The comparison of different adsorbate layers indicates that these many-body effects are particularly strong in case of partial occupation of the LUMO derived DOS. In the third part an organic multilayer film (SnPc), an organic-metal interface with strong coupling (SnPc/Ag) and an organic-organic interface (SnPc/PTCDA/Ag) are studied exemplarily with resonant Auger spectroscopy. The comparison of the data gives evidence for the contribution of many-body effects to the autoionization spectra. Furthermore, it is found that the electron-vibration coupling and the substrate-adsorbate charge transfer occurs on the time scale of the core hole life time. Moreover, the interaction at the organic-organic interface is weak, comparable to the intermolecular interaction in the multilayer films, despite a considerable rigid level shift for the SnPc layer. Furthermore, weak but significant electron-electron correlation is found for the molecular frontier orbitals, which are important for the substrate-adsorbate charge transfer. Therefore, these strongly coupled adsorbate films are briefly discussed within the context of the Hubbard model in the last part of this thesis. From the data derived in this work it can be estimated that such monolayer films are in the regime of medium correlations. Consequently one can expect for these adsorbate films properties which are related to the extraordinary behavior of strongly correlated materials, for which Mott metal-insulator transitions, sophisticated magnetic properties and superconductivity can be observed. Additionally some results from the investigation of alkyl/Si self-assembled monolayers are briefly discussed in the appendix. It is demonstrated exemplarily for the alkyl chains that the electronic band structure of short, finitely repeating units can be well modeled by a comparatively simple quantum well approach. In principle this approach can also be applied to higher dimensional systems, which makes it very useful for the description of E(k) relations in the regime of repeating units of intermediate length. Furthermore, the photoelectron and NEXAFS spectra indicate strong interaction at the alkyl/Si interface. It was found that the interface states can be modified by moderate x-ray irradiation, which changes the properties for charge transport through the SAM. N2 - Die Ergebnisse dieser Arbeit tragen zum generellen Verständnis der elektronischen Struktur von dünnen organischen Filmen und Grenzflächen bei. Es wird gezeigt, dass verschiedene Spektroskopieformen der Photoemission sehr hilfreich sind, um Oberflächen und Grenzflächen zu untersuchen. Die Daten in dieser Arbeit weisen darauf hin, dass Vielteilchen Effekte in organischen Dünnschichten eine wichtige Rolle spielen, besonders an Grenzflächen mit starker Wechselwirkung. Diese Effekte können für unterschiedliche Materialeigenschaften von Bedeutung sein. Im ersten Teil dieser Dissertation wird eine systematische Serie von Polyacen Molekülen mit NEXAFS Spektroskopie untersucht. Der Vergleich mit Rumpfniveau und IPES Daten zeigt, dass Rumpfanregungen und Rumpfexzitonen als Vielteilchenanregungen verstanden werden müssen. Dieser Befund impliziert zum Beispiel, dass eine große Exzitonenbindungsenergie nicht automatisch bedeutet, dass das angeregte Elektron nahe am Rumpfloch lokalisiert sein muss. Da diese Effekte auch für Valenzexzitonen auftreten, spielen sie auch bei der Separation von Ladungsträgern oder Rekombination von Elektronen und Löchern eine Rolle. Im nächsten Kapitel werden fundamentale Effekte in organischen Multilagenfilmen und Metall-Organik Grenzflächen mit Rumpfniveau- und NEXAFS Spektroskopie untersucht. Dies wird anhand der systematisch ausgewählten Molekülserie BTCDA, BTCDI, PTCDA, PTCDI durchgeführt. Es wird gezeigt, dass sich im Falle von starker Wechselwirkung an den Grenzflächen eine Substrat-Adsorbat-Zustandsdichte bildet, die zu starken Ladungstransfersatelliten führen kann, ähnlich wie sie für Übergangsmetallkomplexe bekannt sind. Die experimentellen Daten können mit einem Model verstanden werden, das das Single Impurity Anderson Modell mit dem Ansatz von Sawatzky et al. zur Beschreibung von Ladungstransfersatelliten in Übergangsmetallkomplexen vereint. Diese Herangehensweise ist equivalent zum Ansatz von Gunnarsson und Schönhammer für Adsorbate. Sie erlaubt jedoch eine relativ einfache semiquantitative Auswertung der experimentellen Daten. Ein Vergleich der Spektren für verschiedene Adsorbatschichten weist darauf hin, dass Vielteilcheneffekte besonders dann stark sind, wenn die vom LUMO abgeleitete Zustandsdichte teilweise gefüllt ist. Im dritten Teil dieser Arbeit wird exemplarisch jeweils ein organischer Multilagenfilm (SnPc), eine Organik-Metall Grenzfläche mit starker Wechselwirkung (SnPc/Ag) sowie eine Organik-Organik Grenzfläche (SnPc/PTCDA/Ag) mit resonanter Auger Spektroskopie untersucht. Durch den Vergleich der Daten wird der Beitrag der Vielteilcheneffekte zu den Autoionisationsspektren klar. Demnach laufen die Elektron-Vibrations-Kopplung und der Adsorbat-Substrat Ladungstransfer auf der Zeitskala der Rumpflochlebensdauer ab. Außerdem ist die Wechselwirkung an der Organik-Organik Grenzfläche zwischen SnPc und PTCDA sehr schwach, vergleichbar mit der intermolekularen Wechselwirkung in Multilagenschichten trotz einer parallelen Verschiebung aller elektronischen Niveaus in der SnPc Schicht. Desweiteren wird eine relativ schwache aber dennoch signifikante Elektron-Elektron Korrelation in den oberen Valenzorbitalen gefunden, die eine wichtige Rolle für den Ladungstransfer zwischen Adsorbat und Substrat spielt. Daher werden im letzten Teil dieser Dissertation die stark gekoppelten Adsorbat Filme kurz im Kontext des Hubbard Modells diskutiert. Mit den Daten aus dieser Arbeit können solche Monolagenfilme in den Bereich für mittlere Korrelationsstärke eingeordnet werden. Folglich kann man für solche Adsorbatfilme Eigenschaften erwarten, die dem außergewöhnlichen Verhalten stark korrelierter Systeme ähneln, für die z. B. Mott Metall-Isolator Übergänge, interessante magnetische Eigenschaften und Supraleitung beobachtet wurden. Zusätzlich werden im Anhang kurz einige Ergebnisse aus den Untersuchungen an einem Schichtsystem diskutiert, das aus einer Monolage Alkylketten auf dem anorganischen Halbleiter Silizium besteht und auch als self-assembled monolayer (SAM) bekannt ist. An den Alkylketten wird exemplarisch gezeigt, dass die elektronische Bandstruktur von kurzen, sich endlich wiederholenden Einheiten sehr gut durch einen relativ einfachen Quantentrog Ansatz wiedergegeben werden kann. Im Prinzip kann dieser Ansatz auch auf mehrdimensionale Systeme angewendet werden. Daher ist er für die Beschreibung von E(k) Relationen in intermediären Systemen mit endlichen Wiederholeinheiten sehr nützlich. Desweiteren wird in den Photoelektronen- und NEXAFS Spektren eine starke Wechselwirkung an der alkyl/Si Grenzfläche beobachtet. Es wird gezeigt, dass die Grenzflächenzustände durch moderate Röntgenstrahlung modifiziert werden können, was wiederum die Eigenschaften für Ladungstransport durch die Alkylschicht beeinflusst. KW - Organischer Stoff KW - Dünne Schicht KW - Grenzfläche KW - Elektronenstruktur KW - NEXAFS KW - (resonant) photoemission spectroscopy KW - organic thin-films KW - interfaces KW - charge transfer satellites KW - polyacene KW - PTCDA KW - phthalocyanine KW - self-assembled monolayer (SAM) KW - electron-vibration coupling Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55494 ER -