TY - THES A1 - Nair, Radhika Karal T1 - Structural and biochemical characterization of USP28 inhibition by small molecule inhibitors T1 - Strukturelle und biochemische Charakterisierung der Hemmung von USP28 durch niedermolekulare Inhibitoren N2 - Ubiquitination is an important post-translational modification that maintains cellular homeostasis by regulating various biological processes. Deubiquitinases (DUBs) are enzymes that reverse the ubiquitination process by catalyzing the removal of ubiquitin from a substrate. Abnormal expression or function of DUBs is often associated with the onset and progression of various diseases, including cancer. Ubiquitin specific proteases (USPs), which constitute the largest family of DUBs in humans, have become the center of interest as potential targets in cancer therapy as many of them display increased activity or are overexpressed in a range of malignant tumors or the tumor microenvironment. Two related members of the USP family, USP28 and USP25, share high sequence identities but play diverse biological roles. USP28 regulates cell proliferation, oncogenesis, DNA damage repair and apoptosis, whereas USP25 is involved in the anti-viral response, innate immunity and ER-associated degradation in addition to carcinogenesis. USP28 and USP25 also exhibit different oligomeric states – while USP28 is a constitutively active dimer, USP25 assumes an auto-inhibited tetrameric structure. The catalytic domains of both USP28 and USP25 comprise the canonical, globular USP-domain but contain an additional, extended insertion site called USP25/28 catalytic domain inserted domain (UCID) that mediates oligomerization of the proteins. Disruption of the USP25 tetramer leads to the formation of an activated dimeric protein. However, it is still not clear what triggers its activation. Due to their role in maintaining and stabilizing numerous oncoproteins, USP28 and USP25 have emerged as interesting candidates for anti-cancer therapy. Recent advances in small-molecular inhibitor development have led to the discovery of relatively potent inhibitors of USP28 and USP25. This thesis focuses on the structural elucidation of USP28 and the biochemical characterization of USP28/USP25, both in complex with representatives of three out of the eight compound classes reported as USP28/USP25-specific inhibitors. The crystal structures of USP28 in complex with the AZ compounds, Vismodegib and FT206 reveal that all three inhibitor classes bind into the same allosteric pocket distant from the catalytic center, located between the palm and the thumb subdomains (the S1-site). Intriguingly, this binding pocket is identical to the UCID-tip binding interface in the USP25 tetramer, rendering the protein in a locked, inactive conformation. Formation of the binding pocket in USP28 requires a shift in the helix α5, which induces conformational changes and local distortion of the binding channel that typically accommodates the C-terminal tail of Ubiquitin, thus preventing catalysis and abrogating USP28 activity. The key residues of the USP28-inhibitor binding pocket are highly conserved in USP25. Mutagenesis studies of these residues accompanied by biochemical and biophysical assays confirm the proposed mechanism of inhibition and similar binding to USP25. This work provides valuable insights into the inhibition mechanism of the small molecule compounds specifically for the DUBs USP28 and USP25. The USP28-inhibitor complex structures offer a framework to develop more specific and potent inhibitors. N2 - Ubiquitinierung ist eine wichtige posttranslationale Modifikation, die die zelluläre Homöostase aufrechterhält, indem sie verschiedene biologische Prozesse reguliert. Deubiquitinasen (DUBs) sind Enzyme, die den Ubiquitinierungsprozess umkehren, indem sie die Entfernung von Ubiquitin von einem Substrat katalysieren. Eine abnorme Expression oder Funktion von DUBs wird häufig mit dem Auftreten und Fortschreiten verschiedener Krankheiten, einschließlich Krebs, in Verbindung gebracht. Ubiquitin-spezifische Proteasen (USPs), die im Menschen die größte Familie der DUBs bilden, sind als potenzielle Ziele in der Krebstherapie von besonderem Interesse, da viele von ihnen in bösartigen Tumoren oder deren Mikroumgebung abnormal aktiv oder überexprimiert sind. Die zwei eng verwandten Mitglieder der USP-Familie, USP28 und USP25, weisen eine hohe Sequenzidentität auf, sind aber an unterschiedlichen biologischen Prozessen beteiligt. USP28 reguliert die Zellproliferation, die Onkogenese, die Reparatur von DNA-Schäden und die Apoptose, während USP25 eine Rolle bei der antiviralen Reaktion, der angeborenen Immunität, dem ER-assoziierten Abbau und der Carcinogenese spielt. USP28 und USP25 weisen auch unterschiedliche oligomere Zustände auf. Während USP28 ein konstitutiv aktives Dimer bildet, tritt USP25 als auto-inhibiertes Tetramer auf. Strukturell bestehen die katalytischen Domänen sowohl von USP28 als auch von USP25 aus der kanonischen globulären USP-Domäne enthalten jedoch eine zusätzliche Insertion, die als „USP25/28 catalytic domain inserted domain (UCID)“ bezeichnet wird und die Oligomerisierung der Proteine vermittelt. Die Dissoziation des USP25 Tetramers in Dimere führt zu einem aktivierten USP25-Protein. Es ist jedoch immer noch nicht klar, was seine Aktivierung auslöst. Aufgrund ihrer Rolle bei der Aufrechterhaltung und Stabilisierung zahlreicher Onkoproteine haben sich USP28 und USP25 als interessante Kandidaten für die Entwicklung von Medikamenten in der Krebstherapie erwiesen. Jüngste Fortschritte in der Entwicklung von niedermolekularen Inhibitoren haben zur Entdeckung von relativ potenten Inhibitoren von USP28 und USP25 geführt. Diese Arbeit konzentriert sich auf die Strukturaufklärung von USP28 und die biochemische Charakterisierung von USP28/USP25, beide im Komplex mit Vertretern von drei der acht Verbindungsklassen, die als USP28/USP25-spezifische Inhibitoren bekannt sind. Die Kristallstrukturen von USP28 im Komplex mit den AZ-Verbindungen, Vismodegib und FT206 zeigen, dass alle Inhibitoren in einer ähnlichen Region an USP28 binden - einer allosterischen Tasche, die in der Nähe des katalytischen Zentrums liegt und sich zwischen der Handflächen- und der Daumen-Subdomäne befindet. Diese Bindungstasche ist identisch mit der Position, an der der „UCID-tip“ im USP25-Tetramer bindet und das Protein in eine verschränkte, inaktive Konformation versetzt. Die Bildung der Bindungstasche in USP28 erfordert eine Verschiebung der α5-Helix, die zu Konformationsänderungen und einer lokalen Verzerrung des Bindungskanalsführt, der normalerweise den C-terminus des Ubiquitin-Moleküls bindet und so die Katalyse verhindert und die Aktivität von USP28 hemmt. Die Schlüsselreste der USP28-Inhibitor-Bindungstasche sind in USP25 hoch konserviert. Mutagenese-Studien dieser Aminosäuren, begleitet von biochemischen und biophysikalischen Analysen, bestätigen den vorgeschlagenen Mechanismus der Hemmung und eine ähnliche Bindung der Inhibitoren an USP25. Diese Arbeit liefert wertvolle Einblicke in den Hemmungsmechanismus der Kleinmolekülverbindungen, die spezifisch für die DUBs USP28 und USP25 entwickelt worden sind. Die Strukturen der USP28-Inhibitor-Komplexe bieten eine Grundlage für die zukünftige Entwicklung spezifischerer und wirksamerer Inhibitoren. KW - USP KW - Inhibition KW - enzyme KW - crystallography KW - Unique Selling Proposition KW - Inhibition KW - Enzym KW - Kristallographie Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281742 ER - TY - THES A1 - Wolski, Stefanie Carola T1 - Structural and functional characterization of nucleotide excision repair proteins T1 - Strukturelle und funktionelle Charakterisierung von Nucleotid-Exzisions-Reparatur Proteinen N2 - XPD is a 5‘-3‘ helicase of the superfamily 2. As part of the transcription factor IIH it functions in transcription initiation and nucleotide excision repair. This work focus on the role of XPD in nucleotide excision repair. NER is a DNA repair pathway unique for its broad substrate range. In placental mammals NER is the only repair mechanism able to remove lesions induced by UV-light. NER can be divided into four different steps that are conserved between pro- and eukaryotes. Step 1 consists of the initial damage recognition, during step 2 the putative damage is verified, in step 3 the verified damage is excised and in the 4th and final step the resulting gap in the DNA is refilled. XPD was shown to be involved in the damage verification step. It was possible to solve the first apo XPD structure by a MAD approach using only the endogenous iron from the iron sulfur cluster. Based on the apo XPD structure several questions arise: where is DNA bound? Where is DNA separated? How is damage verification achieved? What is the role of the FeS cluster? These questions were addressed in this work. Hypothesis driven structure based functional mutagenesis was employed and combined with detailed biochemical characterization of the variants. The variants were analyzed by thermal unfolding studies to exclude the possibility that the overall stability could be affected by the point mutation. DNA binding assays, ATPase assays and helicase assays were performed to delineate amino acid residues important for DNA binding, helicase activity and damage recognition. A structure of XPD containing a four base pair DNA fragment was solved by molecular replacement. This structure displays the polarity of the translocated strand with respect to the helicase framework. Moreover the properties of the FeS cluster were studied by electron paramagnetic resonance to get insights into the role of the FeS cluster. Furthermore XPD from Ferroplasma acidarmanus was investigated since it was shown that it is stalled at CPD containing lesions. The data provide the first detailed insight into the translocation mechanism of a SF2B helicase and reveal how polarity is achieved. This provides a basis for further anlayses understanding the combined action of the helicase and the 4Fe4S cluster to accomplish damage verification within the NER cascade. N2 - XPD ist eine 5‘-3‘ Helicase der Superfamilie 2. Als Untereinheit des Transkriptionsfaktors IIH ist XPD in Transkriptionsinitiation und Nucleotid-Exzisions-Reparatur involviert. Diese Arbeit fokusiert auf die Rolle von XPD in der NER. NER ist ein DNA Reparatur Weg der bekannt ist für seine breite Substratspezifität. In Säugetieren ist NER der einzige Reparaturmechanismus, der fähig ist Läsionen zu reparieren, die durch UV Strahlung induziert werden. NER kann man in vier unterschiedliche Schritte aufteilen die zwischen Pro- und Eukaryoten konserviert sind. Schritt 1 besteht aus der initialen Schadenserkennung, während des zweiten Schrittes wird der mögliche Schaden verifiziert, im dritten Schritt wird der verifizierte Schaden ausgeschnitten und im vierten und letzten Schritt wird die resultierende Lücke in der DNA geschlossen. Es wurde gezeigt, dass XPD in die Schadensverifizierung involviert ist. Ein MAD Versuch, bei dem nur das endogene Eisen des Eisen-Schwefel-Clusters verwendet wurde ermöglichte die Strukturlösung der ersten apo XPD Struktur. Basierend auf der Struktur ergeben sich verschiedene Fragen: wo wird DNA gebunden? Wo wird DNA aufgetrennt? Wie wird Schadenserkennung ermöglicht? Was ist die Rolle des Eisen-Schwefel-Clusters? Diese Fragen werden in dieser Arbeit angesprochen. Strukturbasierte funktionelle Mutagenesestudien, die auf Hypothesen basiert sind, wurden angewendet und mit einer detailierten biochemischen Charakterizierung der Varianten kombiniert. Die Varianten wurden mittels thermischen Entfaltungsstudien analysiert, um die Möglichkeit auszuschliessen, dass die Stabilität durch die Punktmutation betroffen ist. DNA-Bindungs- Assays, ATPase Assays und Helikase Assays wurden durchgeführt um Aminosäurereste zu identifizieren, die für DNA Bindung, Helikase Aktivität und Schadenserkennung wichtig sind. Eine Struktur von XPD, die ein DNA Fragment mit vier Basen enthält, wurde mittels Molekularem Ersatz gelöst. Diese Struktur zeigt die Polarität des translozierenden DNA- Stranges im Verhältnis zu der Helikasestruktur auf. Desweiteren wurden die Eigenschaften des FeS Clusters mittels paramagnetischen Elektronenresonanz Studien untersucht, um Einblicke in die Rolle des FeS Clusters zu bekommen. Ausserdem wurde XPD aus Ferroplasma acidarmanus erforscht, da gezeigt wurde, dass es an CPD enthaltenden Läsionen hängen bleibt. Diese Daten stellen die ersten detailierten Einblicke in den Translokationsmechanismus einer SF2B Helikase dar und zeigen wie Polarität erzielt wird. Das ist eine Basis für weitere Analysen, um die kombinierte Aktion von Helikase und dem 4Fe4S Cluster zu verstehen, die zur Schadenserkennung in der NER Kaskade führt. KW - DNS-Reparatur KW - Helicasen KW - Kristallographie KW - XPD KW - Xeroderma pigmentosum KW - TFIIH KW - Nukleotid-Exzisions-Reparatur KW - X-ray Crystallography KW - XPD KW - TFIIH KW - Nucleotide-Excision-Repair KW - FeS cluster Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67183 ER -