TY - THES A1 - Möller, Jan T1 - Mechanisms and consequences of µ-opioid receptor dimerization T1 - Mechanismen und Konsequenzen der µ-Opioid-Rezeptor-Dimerisierung N2 - One third of all market approved drugs target G protein coupled receptors (GPCRs), covering a highly diverse spectrum of indications reaching from acute anti-allergic treatment over bloodpressure regulation, Parkinson's disease, schizophrenia up to the treatment of severe pain. GPCRs are key signaling proteins that mostly function as monomers, but for several receptors constitutive dimer formation has been described and in some cases is essential for function. I have investigated this problem using the μ-opioid receptor (µOR) as a model system - based both on its pharmacological importance and on specific biochemical data suggesting that it may present a particularly intriguing case of mono- vs- dimerization. The µOR is the prime target for the treatment of severe pain. In its inactive conformation it crystallizes as homodimer when bound to the antagonist β- funaltrexamine (β-FNA), whereas the active, agonist-bound receptor crystallizes as a monomer. Using single-molecule microscopy combined with superresolution techniques on intact cells, I describe here a dynamic monomer-dimer equilibrium of µORs where dimer formation is driven by specific agonists. The agonist DAMGO, but not morphine, induces dimer formation in a process that correlates temporally and, in its agonist, and phosphorylation dependence with β-arrestin2 binding to the receptors. This dimerization is independent from but may precede µOR internalization. Furthermore, the results show that the μOR tends to stay, on the cell surface, within compartments defined by actin fibers and its mobility is modulated by receptor activation. These data suggest a new level of GPCR regulation that links receptor compartmentalization and dimer formation to specific agonists and their downstream signals. N2 - Abgesehen davon, dass der μ-Opioid-Rezeptor das primäre Zielprotein zur Behandlung schwerer Schmerzen ist, führt die Aktivierung dieses Rezeptors zu einer Reihe von unerwünschten Nebenwirkungen wie Atemdepression, Obstipation und Drogenabhängigkeit. Um die medizinischen Chemiker bei der Entwicklung neuer Arzneistoffe zu unterstützen, ist das Verständnis der molekularen Funktion insbesondere der Aktivierungs- und Deaktivierungsmechanismen des μ-Opioid-Rezeptors von voranschreitender Bedeutung. Die prominentesten Signalpartner des μ-Opioid-Rezeptors sind G-Proteine des Typs Gi, sowie nach vorheriger Phosphorylierung durch G-Protein-gekoppelte Rezeptorkinasen, β- Arrestin2. Die neusten strukturbasierten Bemühungen zur Entwicklung sicherer Opioid-Schmerzmittel waren auf die Herstellung von Signal-selektiven konzentriert, die eine hohe Präferenz für G-Protein-Signalwege aufweisen und somit die β- Arrestin-vermittelten Nebenwirkungen umgehen sollen. In der Tat konnte, durch Knock-in -Mäuse mit phosphorylierungs-defizienten μ-Opioid-Rezeptoren gezeigt werden, dass die analgetischen Effekte verbessert wurden und die Toleranzentwicklung abgeschwächt wurde, wenn der Rezeptor eine Präferenz für den G-Protein Signalweg zeigte. Unerwarteterweise wurden die anderen Nebenwirkungen, wie Atemdepressionen, Obstipation, sowie Entzugssymptome jedoch dadurch verschlimmert. Ein Erklärungsversuch für dieses andauernde Problem bei der Entwicklung sicherer Opioid-Medikamente basiert auf der verminderten intrinsischen Aktivität dieser G- Protein Signalweg-betonten Arzneistoffe. ... KW - Pharmacology KW - Opiatrezeptor KW - Dimere Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219862 ER - TY - THES A1 - Gentzsch, Christian T1 - Molecular Imaging of Opioid Receptors and Butyrylcholinesterase with Selective, Tailored Probes Using Positron Emission Tomography and Fluorescence Microscopy T1 - Molekulare Bildgebung von Opioidrezeptoren und Butyrylcholinesterase mit selektiven, maßgeschneiderten Verbindungen durch Positronen-Emissions-Tomographie und Fluoreszenzmikroskopie N2 - The present thesis concerns the molecular imaging of opioid receptors and human butyrylcholinesterase with the aid of tailored probes, which are suitable for the respective applied imaging techniques. The first part focusses on imaging of opioid receptors with selective probes using total internal reflection- and single molecule fluorescence microscopy. Design and synthesis of the ligands are presented and their pharmacological characterization and application in microscopy experiments are shown. The second part of this thesis focused on the development of 18F-labeled, selective radiotracers for imaging of butyrylcholinesterase via positron emission tomography. The design and synthesis of each a reversible and pseudoirreversible 18F-labeled tracer are presented. After evaluation of the binding properties of each tracer, their initial application in ex vivo autoradiography- and preliminary in vivo microPET studies is described and analyzed. N2 - Die vorliegende Arbeit beschäftigt sich mit der molekularen Bildgebung von Opioidrezeptoren und der humanen Butyrylcholinesterase mithilfe von maßgeschneiderten Verbindungen, die jeweils optimal geeignet für die angewendeten Bildgebungstechniken sind. Der erste Teil behandelt die Bildgebung von Opioidrezeptoren durch selektive Liganden mittels interner Totalreflexionsfluoreszenzmikroskopie- und Einzelmolekül-Mikroskopie. Design und Synthese der Liganden werden beschrieben und ihre pharmakologische Charakterisierung und Anwendung in Mikroskopieexperimenten werden gezeigt. Der zweite Teil der Arbeit beschäftigt sich mit der Entwicklung von 18F-markierten, selektiven Radiotracern für die Bildgebung der Butyrylcholinesterase mittels Positronen-Emissions-Tomographie. Das Design und die Synthese jeweils eines reversiblen und pseudo-irreversiblen, 18F-markierten Tracers werden beschrieben. Nach der Bewertung der Bindungseigenschaften beider Tracer am Enzym, wird ihre erste Anwendung in ex vivo Autoradiographie- und vorläufigen in vivo microPET Studien beschrieben und ausgewertet. KW - Fluoreszenzmikroskopie KW - Positronen-Emissions-Tomografie KW - Opiatrezeptor KW - Dimerisierung KW - Enzyminhibitor KW - Fluoreszenzliganden KW - Biodistribution KW - Autoradiographie Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-247529 ER - TY - THES A1 - Schmid, Benedikt T1 - Molecular Signaling Mechanisms at the µ-Opioid Receptor T1 - Molekulare Signalmechanismen am µ-Opioidrezeptor N2 - To this day, opioids represent the most effective class of drugs for the treatment of severe pain. On a molecular level, all opioids in use today are agonists at the μ-opioid receptor (μ receptor). The μ receptor is a class A G protein-coupled receptor (GPCR). GPCRs are among the biological structures most frequently targeted by pharmaceuticals. They are membrane bound receptors, which confer their signals into the cell primarily by activating a variety of GTPases called G proteins. In the course of the signaling process, the μ receptor will be phosphorylated by GRKs, increasing its affinity for another entity of signaling proteins called β-arrestins (β-arrs). The binding of a β-arr to the activated μ receptor will end the G protein signal and cause the receptor to be internalized into the cell. Past research showed that the μ receptor’s G protein signal puts into effect the desired pain relieving properties of opioid drugs, whereas β-arr recruitment is more often linked to adverse effects like obstipation, tolerance, and respiratory depression. Recent work in academic and industrial research picked up on these findings and looked into the possibility of enhancing G protein signaling while suppressing β-arr recruitment. The conceptual groundwork of such approaches is the phenomenon of biased agonism. It appreciates the fact that different ligands can change the relative contribution of any given pathway to the overall downstream signaling, thus enabling not only receptor-specific but even pathway-specific signaling. This work examined the ability of a variety of common opioid drugs to specifically activate the different signaling pathways and quantify it by means of resonance energy transfer and protein complementation experiments in living cells. Phosphorylation of the activated receptor is a central step in the canonical GPCR signaling process. Therefore, in a second step, expression levels of the phosphorylating GRKs were enhanced in search for possible effects on receptor signaling and ligand bias. In short, detailed pharmacological profiles of 17 opioid ligands were recorded. Comparison with known clinical properties of the compounds showed robust correlation of G protein activation efficacy and analgesic potency. Ligand bias (i.e. significant preference of any path- way over another by a given agonist) was found for a number of opioids in native HEK293 cells overexpressing μ receptor and β-arrs. Furthermore, overexpression of GRK2 was shown to fundamentally change β-arr pharmacodynamics of nearly all opioids. As a consequence, any ligand bias as detected earlier was abolished with GRK2 overexpression, with the exception of buprenorhin. In summary, the following key findings stand out: (1) Common opioid drugs exert biased agonism at the μ receptor to a small extent. (2) Ligand bias is influenced by expression levels of GRK2, which may vary between individuals, target tissues or even over time. (3) One of the opioids, buprenorhin, did not change its signaling properties with the overexpression of GRK2. This might serve as a starting point for the development of new opioids which could lack the ability of β-arr recruitment altogether and thus might help reduce adverse side effects in the treatment of severe pain. N2 - Nach wie vor stellen Opioide die wirkstärkste Gruppe von Medikamenten zu Behandlung starker Schmerzen dar. Auf molekularer Ebene sind alle heute gebräuchlichen Opioide Agonisten am μ-Opioidrezeptor. Der μ-Opioidrezeptor ist ein G-Protein-gekoppelter Rezeptor (GPCR) der Klasse A. GPCR zählen zu den häufigsten Zielstrukturen von Pharmaka. Sie sind membranständige Rezeptoren, die ihr Signal in erster Linie durch die Aktivierung von G-Proteine genannten GTPasen in die Zelle weiterleiten. Im Laufe des Signalprozesses wird der GPCR von GRK phosphoryliert, wodurch seine Affinität zu einer weiteren Gruppe von Signalproteinen, den sog. β-Arrestinen erhöht wird. Bindet ein β-Arrestin an den Rezeptor, beendet dies das G-Proteinsignal und veranlasst die Internalisierung des Rezeptors ins Zellinnere. Bisherige Forschung zeigte, dass das G-Proteinsignal des μ-Opioidrezeptors die erwünschte Schmerzlinderung vermittelt, wohingegen die Rekrutierung von β-Arrestin oftmals mit unerwünschten Wirkungen wie Obstipation, Toleranzentwicklung und Atemdepression in Verbindung gebracht wird. Neuere akademische und industrielle Forschung griff diese Erkenntnisse auf und erkundete die Möglichkeit, das G-Proteinsignal zu verstärken und zur gleichen Zeit die β-Arrestinrekrutierung zu inhibieren. Die theoretische Grundlage solcher Ansätze liegt im Konzept des biased agonism. Dieses berücksichtigt die Tatsache, dass verschiedene Liganden den Anteil eines bestimmten Signalweges am gesamten vom Rezeptor ausgehenden Signals beeinflussen kann und damit nicht nur rezeptor-, sondern sogar signalwegspezifische Signale möglich sein sollten. Die vorliegende Arbeit untersuchte eine Reihe von gängigen Opioiden auf ihre Fähigkeit hin, die einzelnen Signalwege spezifisch zu aktivieren und quantifizierte dies mit Methoden des Resonanzenergietransfers sowie der Proteinkomplementierung in lebenden Zellen. Die Phosphorylierung des Rezeptors ist ein zentrales Ereignis in der anerkannten Abfolge der Signalprozesse an GPCR. Daher wurde in einem weiteren Schritt die Expression der phosphorylierenden GRK erhöht und nach möglichen Auswirkungen auf die Selektivität der Signalwegaktivierung gesucht. Hierbei wurde detaillierte pharmakologische Profile von 17 Opioiden erstellt. Der Abgleich mit bekannten klinischen Wirkeigenschaften der Substanzen zeigte einen robusten Zusammenhang zwischen der Fähigkeit, G-Proteine zu aktivieren und der analgetischen Wirkstärke. Ligand bias, d.h. die signifikante Bevorzugung eines Signalweges gegenüber einem anderen durch einen Liganden, konnte für eine Reihe von Opioiden in lebenden HEK293-Zellen gezeigt werden, die den μ-Opioidrezeptor sowie β-Arrestine überexprimierten. Darüber hinaus konnte gezeigt werden, dass die zusätzliche Überexpression von GRK2 die pharmakodynamischen Eigenschaften nahezu aller Opioide grundlegend veränderte. In der Folge war jeder zuvor gezeigte ligand bias mit Ausnahme von Buprenorphin aufgehoben. Zusammenfassend stehen die folgenden drei Erkenntnisse im Vordergrund: (1) Gängige Opioide zeigen in einem gewissen Maß Selektivität zwischen den Signalwegen. (2) Ligand bias wird beeinflusst von GRK2-Expressionsleveln, welche zwischen Individuen, verschiedenen Gewebetypen oder auch im zeitlichen Verlauf variieren können. (3) Als einziges der untersuchten Opioide änderte Buprenorphin seine Signaleigenschaften durch die Überexpression von GRK2 nicht. Dies könnte als Anknüpfungspunkt in der Entwicklung neuer Opioide dienen, die keinerlei β-Arrestinrekrutierung bewirken und dadurch helfen könnten, unerwünschte Wirkungen in der Behandlung starker Schmerzen zu verhindern. KW - Opiatrezeptor KW - Opioide KW - G-Protein gekoppelte Rezeptoren KW - Pharmakodynamik KW - Arrestine KW - Rezeptorpharmakologie KW - biased agonism KW - signalling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176850 ER -