TY - JOUR A1 - Siegmund, Daniela A1 - Zaitseva, Olena A1 - Wajant, Harald T1 - Fn14 and TNFR2 as regulators of cytotoxic TNFR1 signaling JF - Frontiers in Cell and Developmental Biology N2 - Tumor necrosis factor (TNF) receptor 1 (TNFR1), TNFR2 and fibroblast growth factor-inducible 14 (Fn14) belong to the TNF receptor superfamily (TNFRSF). From a structural point of view, TNFR1 is a prototypic death domain (DD)-containing receptor. In contrast to other prominent death receptors, such as CD95/Fas and the two TRAIL death receptors DR4 and DR5, however, liganded TNFR1 does not instruct the formation of a plasma membrane-associated death inducing signaling complex converting procaspase-8 into highly active mature heterotetrameric caspase-8 molecules. Instead, liganded TNFR1 recruits the DD-containing cytoplasmic signaling proteins TRADD and RIPK1 and empowers these proteins to trigger cell death signaling by cytosolic complexes after their release from the TNFR1 signaling complex. The activity and quality (apoptosis versus necroptosis) of TNF-induced cell death signaling is controlled by caspase-8, the caspase-8 regulatory FLIP proteins, TRAF2, RIPK1 and the RIPK1-ubiquitinating E3 ligases cIAP1 and cIAP2. TNFR2 and Fn14 efficiently recruit TRAF2 along with the TRAF2 binding partners cIAP1 and cIAP2 and can thereby limit the availability of these molecules for other TRAF2/cIAP1/2-utilizing proteins including TNFR1. Accordingly, at the cellular level engagement of TNFR2 or Fn14 inhibits TNFR1-induced RIPK1-mediated effects reaching from activation of the classical NFκB pathway to induction of apoptosis and necroptosis. In this review, we summarize the effects of TNFR2- and Fn14-mediated depletion of TRAF2 and the cIAP1/2 on TNFR1 signaling at the molecular level and discuss the consequences this has in vivo. KW - apoptosis KW - Fn14 KW - necroptosis KW - TNF KW - TNFR1 KW - TNFR2 KW - TRAF2 KW - TWEAK Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-354304 SN - 2296-634X VL - 11 ER - TY - JOUR A1 - Trivanovic, Drenka A1 - Volkmann, Noah A1 - Stoeckl, Magdalena A1 - Tertel, Tobias A1 - Rudert, Maximilian A1 - Giebel, Bernd A1 - Herrmann, Marietta T1 - Enhancement of immunosuppressive activity of mesenchymal stromal cells by platelet-derived factors is accompanied by apoptotic priming JF - Stem Cell Reviews and Reports N2 - The pro-inflammatory phase of bone healing, initiated by platelet activation and eventually hematoma formation, impacts bone marrow mesenchymal stromal cells (MSCs) in unknown ways. Here, we created platelet-rich plasma (PRP) hydrogels to study how platelet-derived factors modulate functional properties of encapsulated MSCs in comparison to a non-inflammatory fibrin (FBR) hydrogel environment. MSCs were isolated from human bone marrow, while PRP was collected from pooled apheresis thrombocyte concentrates and used for hydrogel preparation. After their encapsulation in hydrogels for 72 h, retrieved MSCs were analyzed for immunomodulatory activities, apoptosis, stem cell properties, senescence, CD9\(^+\), CD63\(^+\) and CD81\(^+\) extracellular vesicle (EV) release, and metabolism-related changes. PRP-hydrogels stimulated immunosuppressive functions of MSCs, along with their upregulated susceptibility to cell death in communication with PBMCs and augmented caspase 3/7 activity. We found impaired clonal growth and cell cycle progression, and more pronounced β-galactosidase activity as well as accumulation of LC3-II-positive vacuoles in PRP-MSCs. Stimuli derived from PRP-hydrogels upregulated AKT and reduced mTOR phosphorylation in MSCs, which suggests an initiation of survival-related processes. Our results showed that PRP-hydrogels might represent a metabolically stressful environment, inducing acidification of MSCs, reducing polarization of the mitochondrial membrane and increasing lipid accumulation. These features were not detected in FBR-MSCs, which showed reduced CD63\(^+\) and CD81\(^+\) EV production and maintained clonogenicity. Our data revealed that PRP-derived hematoma components cause metabolic adaptation of MSCs followed by increased immune regulatory functions. For the first time, we showed that PRP stimuli represent a survival challenge and “apoptotic priming” that are detrimental for stem cell-like growth of MSCs and important for their therapeutic consideration. KW - hematoma KW - platelet-rich plasma KW - fibrin KW - mesenchymal stromal cells KW - immunomodulation KW - apoptosis KW - autophagy KW - senescence KW - extracellular vesicles KW - metabolism Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324669 VL - 19 IS - 3 ER - TY - JOUR A1 - Ben Khaled, Najib A1 - Hammer, Katharina A1 - Ye, Liangtao A1 - Alnatsha, Ahmed A1 - Widholz, Sebastian A. A1 - Piseddu, Ignazio A1 - Sirtl, Simon A1 - Schneider, Julia A1 - Munker, Stefan A1 - Mahajan, Ujjwal Mukund A1 - Montero, Juan José A1 - Griger, Joscha A1 - Mayerle, Julia A1 - Reiter, Florian P. A1 - De Toni, Enrico N. T1 - TRAIL receptor targeting agents potentiate PARP inhibitor efficacy in pancreatic cancer independently of BRCA2 mutation status JF - Cancers N2 - Chemotherapy, the standard treatment for pancreatic ductal adenocarcinoma (PDAC), has only a modest effect on the outcome of patients with late-stage disease. Investigations of the genetic features of PDAC have demonstrated a frequent occurrence of mutations in genes involved in homologous recombination (HR), especially in the breast cancer susceptibility gene 2 (BRCA2). Olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor, is approved as a maintenance treatment for patients with advanced PDAC with germline BRCA1/2 mutations following a platinum-containing first-line regimen. Limitations to the use of PARP inhibitors are represented by the relatively small proportion of patients with mutations in BRCA1/2 genes and the modest capability of these substances of inducing objective response. We have previously shown that pancreatic cancer with BRCA2 mutations exhibits a remarkably enhanced sensitivity towards tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) receptor-stimulating agents. We thus aimed to investigate the effect of combined treatment with PARP inhibitors and TRAIL receptor-stimulating agents in pancreatic cancer and its dependency on the BRCA2 gene status. The respective effects of TRAIL-targeting agents and the PARP inhibitor olaparib or of their combination were assessed in pancreatic cancer cell lines and patient-derived organoids. In addition, BRCA2-knockout and -complementation models were investigated. The effects of these agents on apoptosis, DNA damage, cell cycle, and receptor surface expression were assessed by immunofluorescence, Western blot, and flow cytometry. PARP inhibition and TRAIL synergized to cause cell death in pancreatic cancer cell lines and PDAC organoids. This effect proved independent of BRCA2 gene status in three independent models. Olaparib and TRAIL in combination caused a detectable increase in DNA damage and a concentration-dependent cell cycle arrest in the G2/M and S cell cycle phases. Olaparib also significantly increased the proportion of membrane-bound death receptor 5. Our results provide a preclinical rationale for the combination of PARP inhibitors and TRAIL receptor agonists for the treatment of pancreatic cancer and suggest that the use of PARP inhibitors could be extended to patients without BRCA2 mutations if used in combination with TRAIL agonists. KW - apoptosis KW - DNA damage KW - pancreatic neoplasms KW - poly(ADP-ribose) polymerase inhibitors KW - TNF-related apoptosis-inducing ligand Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290884 SN - 2072-6694 VL - 14 IS - 21 ER - TY - JOUR A1 - Siegmund, Daniela A1 - Wagner, Jennifer A1 - Wajant, Harald T1 - TNF receptor associated factor 2 (TRAF2) signaling in cancer JF - Cancers N2 - Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) has been originally identified as a protein interacting with TNF receptor 2 (TNFR2) but also binds to several other receptors of the TNF receptor superfamily (TNFRSF). TRAF2, often in concert with other members of the TRAF protein family, is involved in the activation of the classical NFκB pathway and the stimulation of various mitogen-activated protein (MAP) kinase cascades by TNFRSF receptors (TNFRs), but is also required to inhibit the alternative NFκB pathway. TRAF2 has also been implicated in endoplasmic reticulum (ER) stress signaling, the regulation of autophagy, and the control of cell death programs. TRAF2 fulfills its functions by acting as a scaffold, bringing together the E3 ligase cellular inhibitor of apoptosis-1 (cIAP1) and cIAP2 with their substrates and various regulatory proteins, e.g., deubiquitinases. Furthermore, TRAF2 can act as an E3 ligase by help of its N-terminal really interesting new gene (RING) domain. The finding that TRAF2 (but also several other members of the TRAF family) interacts with the latent membrane protein 1 (LMP1) oncogene of the Epstein–Barr virus (EBV) indicated early on that TRAF2 could play a role in the oncogenesis of B-cell malignancies and EBV-associated non-keratinizing nasopharyngeal carcinoma (NPC). TRAF2 can also act as an oncogene in solid tumors, e.g., in colon cancer by promoting Wnt/β-catenin signaling. Moreover, tumor cell-expressed TRAF2 has been identified as a major factor-limiting cancer cell killing by cytotoxic T-cells after immune checkpoint blockade. However, TRAF2 can also be context-dependent as a tumor suppressor, presumably by virtue of its inhibitory effect on the alternative NFκB pathway. For example, inactivating mutations of TRAF2 have been associated with tumor development, e.g., in multiple myeloma and mantle cell lymphoma. In this review, we summarize the various TRAF2-related signaling pathways and their relevance for the oncogenic and tumor suppressive activities of TRAF2. Particularly, we discuss currently emerging concepts to target TRAF2 for therapeutic purposes. KW - apoptosis KW - autophagy KW - B-cell lymphoma KW - cellular inhibitor of apoptosis 1/2 (cIAP1/2) KW - necroptosis KW - nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells (NFκB) KW - tumor necrosis factor (TNF) KW - TNF receptor associated factor 2 (TRAF2) Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286073 SN - 2072-6694 VL - 14 IS - 16 ER - TY - JOUR A1 - Bartel, Karin A1 - Pein, Helmut A1 - Popper, Bastian A1 - Schmitt, Sabine A1 - Janaki-Raman, Sudha A1 - Schulze, Almut A1 - Lengauer, Florian A1 - Koeberle, Andreas A1 - Werz, Oliver A1 - Zischka, Hans A1 - Müller, Rolf A1 - Vollmar, Angelika M. A1 - Schwarzenberg, Karin von T1 - Connecting lysosomes and mitochondria – a novel role for lipid metabolism in cancer cell death JF - Cell Communication and Signaling N2 - Background The understanding of lysosomes has been expanded in recent research way beyond their view as cellular trash can. Lysosomes are pivotal in regulating metabolism, endocytosis and autophagy and are implicated in cancer. Recently it was discovered that the lysosomal V-ATPase, which is known to induce apoptosis, interferes with lipid metabolism in cancer, yet the interplay between these organelles is poorly understood. Methods LC-MS/MS analysis was performed to investigate lipid distribution in cells. Cell survival and signaling pathways were analyzed by means of cell biological methods (qPCR, Western Blot, flow cytometry, CellTiter-Blue). Mitochondrial structure was analyzed by confocal imaging and electron microscopy, their function was determined by flow cytometry and seahorse measurements. Results Our data reveal that interfering with lysosomal function changes composition and subcellular localization of triacylglycerids accompanied by an upregulation of PGC1α and PPARα expression, master regulators of energy and lipid metabolism. Furthermore, cardiolipin content is reduced driving mitochondria into fission, accompanied by a loss of membrane potential and reduction in oxidative capacity, which leads to a deregulation in cellular ROS and induction of mitochondria-driven apoptosis. Additionally, cells undergo a metabolic shift to glutamine dependency, correlated with the fission phenotype and sensitivity to lysosomal inhibition, most prominent in Ras mutated cells. Conclusion This study sheds mechanistic light on a largely uninvestigated triangle between lysosomes, lipid metabolism and mitochondrial function. Insight into this organelle crosstalk increases our understanding of mitochondria-driven cell death. Our findings furthermore provide a first hint on a connection of Ras pathway mutations and sensitivity towards lysosomal inhibitors. KW - lysosome KW - V-ATPase KW - mitochondria KW - fission KW - apoptosis KW - lipid metabolism KW - cardiolipin Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221524 VL - 17 ER - TY - JOUR A1 - John, Katharina A1 - Franck, Martin A1 - Al Aoua, Sherin A1 - Rau, Monika A1 - Huber, Yvonne A1 - Schattenberg, Joern M. A1 - Geier, Andreas A1 - Bahr, Matthias J. A1 - Wedemeyer, Heiner A1 - Schulze-Osthoff, Klaus A1 - Bantel, Heike T1 - Non-invasive detection of fibrotic NASH in NAFLD patients with low or intermediate FIB-4 JF - Journal of Clinical Medicine N2 - Background: Non-alcoholic steatohepatitis (NASH) and fibrosis are the main prognostic factors in non-alcoholic fatty liver disease (NAFLD). The FIB-4 score has been suggested as an initial test for the exclusion of progressed fibrosis. However, increasing evidence suggests that also NASH patients with earlier fibrosis stages are at risk of disease progression, emphasizing the need for improved non-invasive risk stratification. Methods: We evaluated whether the apoptosis biomarker M30 can identify patients with fibrotic NASH despite low or intermediate FIB-4 values. Serum M30 levels were assessed by ELISA, and FIB-4 was calculated in an exploration (n = 103) and validation (n = 100) cohort of patients with histologically confirmed NAFLD. Results: The majority of patients with low FIB-4 (cut-off value < 1.3) in the exploration cohort revealed increased M30 levels (>200 U/L) and more than 80% of them had NASH, mostly with fibrosis. NASH was also detected in all patients with intermediate FIB-4 (1.3 to 2.67) and elevated M30, from which ~80% showed fibrosis. Importantly, in the absence of elevated M30, most patients with FIB-4 < 1.3 and NASH showed also no fibrosis. Similar results were obtained in the validation cohort. Conclusions: The combination of FIB-4 with M30 enables a more reliable identification of patients at risk for progressed NAFLD and might, therefore, improve patient stratification. KW - apoptosis KW - biomarker KW - fibrosis KW - FIB-4 KW - NAFLD KW - NASH KW - keratin-18 KW - M30 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281824 SN - 2077-0383 VL - 11 IS - 15 ER - TY - JOUR A1 - Müller, Thomas A1 - Mueller, Bernhard Klaus A1 - Riederer, Peter T1 - Perspective: Treatment for disease modification in chronic neurodegeneration JF - Cells N2 - Symptomatic treatments are available for Parkinson's disease and Alzheimer's disease. An unmet need is cure or disease modification. This review discusses possible reasons for negative clinical study outcomes on disease modification following promising positive findings from experimental research. It scrutinizes current research paradigms for disease modification with antibodies against pathological protein enrichment, such as α-synuclein, amyloid or tau, based on post mortem findings. Instead a more uniform regenerative and reparative therapeutic approach for chronic neurodegenerative disease entities is proposed with stimulation of an endogenously existing repair system, which acts independent of specific disease mechanisms. The repulsive guidance molecule A pathway is involved in the regulation of peripheral and central neuronal restoration. Therapeutic antagonism of repulsive guidance molecule A reverses neurodegeneration according to experimental outcomes in numerous disease models in rodents and monkeys. Antibodies against repulsive guidance molecule A exist. First clinical studies in neurological conditions with an acute onset are under way. Future clinical trials with these antibodies should initially focus on well characterized uniform cohorts of patients. The efficiency of repulsive guidance molecule A antagonism and associated stimulation of neurogenesis should be demonstrated with objective assessment tools to counteract dilution of therapeutic effects by subjectivity and heterogeneity of chronic disease entities. Such a research concept will hopefully enhance clinical test strategies and improve the future therapeutic armamentarium for chronic neurodegeneration. KW - neurodegeneration KW - repulsive guidance molecule A KW - neuroprotection KW - repair KW - oxidative stress KW - apoptosis KW - neurogenesis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236644 SN - 2073-4409 VL - 10 IS - 4 ER - TY - JOUR A1 - Grebinyk, Anna A1 - Prylutska, Svitlana A1 - Chepurna, Oksana A1 - Grebinyk, Sergii A1 - Prylutskyy, Yuriy A1 - Ritter, Uwe A1 - Ohulchanskyy, Tymish Y. A1 - Matyshevska, Olga A1 - Dandekar, Thomas A1 - Frohme, Marcus T1 - Synergy of chemo- and photodynamic therapies with C\(_{60}\) Fullerene-Doxorubicin nanocomplex JF - Nanomaterials N2 - A nanosized drug complex was explored to improve the efficiency of cancer chemotherapy, complementing it with nanodelivery and photodynamic therapy. For this, nanomolar amounts of a non-covalent nanocomplex of Doxorubicin (Dox) with carbon nanoparticle C\(_{60}\) fullerene (C\(_{60}\)) were applied in 1:1 and 2:1 molar ratio, exploiting C\(_{60}\) both as a drug-carrier and as a photosensitizer. The fluorescence microscopy analysis of human leukemic CCRF-CEM cells, in vitro cancer model, treated with nanocomplexes showed Dox’s nuclear and C\(_{60}\)'s extranuclear localization. It gave an opportunity to realize a double hit strategy against cancer cells based on Dox's antiproliferative activity and C\(_{60}\)'s photoinduced pro-oxidant activity. When cells were treated with 2:1 C\(_{60}\)-Dox and irradiated at 405 nm the high cytotoxicity of photo-irradiated C\(_{60}\)-Dox enabled a nanomolar concentration of Dox and C\(_{60}\) to efficiently kill cancer cells in vitro. The high pro-oxidant and pro-apoptotic efficiency decreased IC\(_{50}\) 16, 9 and 7 × 10\(^3\)-fold, if compared with the action of Dox, non-irradiated nanocomplex, and C\(_{60}\)'s photodynamic effect, correspondingly. Hereafter, a strong synergy of therapy arising from the combination of C\(_{60}\)-mediated Dox delivery and C\(_{60}\) photoexcitation was revealed. Our data indicate that a combination of chemo- and photodynamic therapies with C\(_{60}\)-Dox nanoformulation provides a promising synergetic approach for cancer treatment. KW - photodynamic chemotherapy KW - synergistic effect KW - C\(_{60}\) fullerene KW - Doxorubicin KW - nanocomplex KW - leukemic cells KW - apoptosis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193140 SN - 2079-4991 VL - 9 IS - 11 ER - TY - JOUR A1 - Stelzner, Kathrin A1 - Boyny, Aziza A1 - Hertlein, Tobias A1 - Sroka, Aneta A1 - Moldovan, Adriana A1 - Paprotka, Kerstin A1 - Kessie, David A1 - Mehling, Helene A1 - Potempa, Jan A1 - Ohlsen, Knut A1 - Fraunholz, Martin J. A1 - Rudel, Thomas T1 - Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells JF - PLoS Pathogens N2 - Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Author summary Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A. KW - Staphylococcus aureus KW - Staphylococcal infection KW - host cells KW - HeLa cells KW - cytotoxicity KW - intracellular pathogens KW - apoptosis KW - epithelial cells Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-263908 VL - 17 IS - 9 ER - TY - JOUR A1 - Heuser, Christoph A1 - Gotot, Janine A1 - Piotrowski, Eveline Christina A1 - Philipp, Marie-Sophie A1 - Courrèges, Christina Johanna Felicia A1 - Otte, Martin Sylvester A1 - Guo, Linlin A1 - Schmid-Burgk, Jonathan Leo A1 - Hornung, Veit A1 - Heine, Annkristin A1 - Knolle, Percy Alexander A1 - Garbi, Natalio A1 - Serfling, Edgar A1 - Evaristo, César A1 - Thaiss, Friedrich A1 - Kurts, Christian T1 - Prolonged IKK\(\beta\) Inhibition Improves Ongoing CTL Antitumor Responses by Incapacitating Regulatory T Cells JF - Cell Reports N2 - Regulatory T cells (Tregs) prevent autoimmunity but limit antitumor immunity. The canonical NF-\(\kappa\)B signaling pathway both activates immunity and promotes thymic Treg development. Here, we report that mature Tregs continue to require NF-\(\kappa\)B signaling through I\(\kappa\)B-kinase \(\beta\) (IKK\(\beta\)) after thymic egress. Mice lacking IKK\(\beta\) in mature Tregs developed scurfy-like immunopathology due to death of peripheral FoxP3\(^+\) Tregs. Also, pharmacological IKK\(\beta\) inhibition reduced Treg numbers in the circulation by ~50% and downregulated FoxP3 and CD25 expression and STAT5 phosphorylation. In contrast, activated cytotoxic T lymphocytes (CTLs) were resistant to IKK\(\beta\) inhibition because other pathways, in particular nuclear factor of activated T cells (NFATc1) signaling, sustained their survival and expansion. In a melanoma mouse model, IKK\(\beta\) inhibition after CTL cross-priming improved the antitumor response and delayed tumor growth. In conclusion, prolonged IKK\(\beta\) inhibition decimates circulating Tregs and improves CTL responses when commenced after tumor vaccination, indicating that IKK\(\beta\) represents a druggable checkpoint. KW - medicine KW - regulatory T cells KW - NF-\(\kappa\)B pathway KW - tumor vaccination KW - checkpoint inhibition KW - cytotoxic T cells KW - cross-priming KW - apoptosis KW - tumor immunology KW - melanoma Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173643 VL - 21 IS - 3 ER - TY - JOUR A1 - Othman, Eman M. A1 - Bekhit, Amany A. A1 - Anany, Mohamed A. A1 - Dandekar, Thomas A1 - Ragab, Hanan M. A1 - Wahid, Ahmed T1 - Design, Synthesis, and Anticancer Screening for Repurposed Pyrazolo[3,4-d]pyrimidine Derivatives on Four Mammalian Cancer Cell Lines JF - Molecules N2 - The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells. KW - pyrazolo[3,4-d]pyrimidine KW - anticancer activity KW - apoptosis KW - Ki67 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239734 SN - 1420-3049 VL - 26 IS - 10 ER - TY - JOUR A1 - Grebinyk, Anna A1 - Prylutska, Svitlana A1 - Buchelnikov, Anatoliy A1 - Tverdokhleb, Nina A1 - Grebinyk, Sergii A1 - Evstigneev, Maxim A1 - Matyshevska, Olga A1 - Cherepanov, Vsevolod A1 - Prylutskyy, Yuriy A1 - Yashchuk, Valeriy A1 - Naumovets, Anton A1 - Ritter, Uwe A1 - Dandekar, Thomas A1 - Frohme, Marcus T1 - C60 fullerene as an effective nanoplatform of alkaloid Berberine delivery into leukemic cells JF - Pharmaceutics N2 - A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle—C60 fullerene (C60)—for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV–Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C\(_{60}\) binding in an aqueous solution. Complexation with C\(_{60}\) was found to promote Ber intracellular uptake. By increasing C\(_{60}\) concentration, the C\(_{60}\)-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C\(_{60}\)-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C\(_{60}\) improved its in vitro efficiency against cancer cells. KW - C60 fullerene KW - Berberine KW - noncovalent nanocomplex KW - UV–Vis KW - DLS and AFM measurements KW - drug release KW - leukemic cells KW - uptake KW - cytotoxicity KW - apoptosis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193216 SN - 1999-4923 VL - 11 IS - 11 ER - TY - JOUR A1 - Nadella, Vinod A1 - Mohanty, Aparna A1 - Sharma, Lalita A1 - Yellaboina, Sailu A1 - Mollenkopf, Hans-Joachim A1 - Mazumdar, Varadendra Balaji A1 - Palaparthi, Ramesh A1 - Mylavarapu, Madhavi B. A1 - Maurya, Radheshyam A1 - Kurukuti, Sreenivasulu A1 - Rudel, Thomas A1 - Prakash, Hridayesh T1 - Inhibitors of Apoptosis Protein Antagonists (Smac Mimetic Compounds) Control Polarization of Macrophages during Microbial Challenge and Sterile Inflammatory Responses JF - Frontiers in Immunology N2 - Apoptosis is a physiological cell death process essential for development, tissue homeostasis, and for immune defense of multicellular animals. Inhibitors of apoptosis proteins (IAPs) regulate apoptosis in response to various cellular assaults. Using both genetic and pharmacological approaches we demonstrate here that the IAPs not only support opportunistic survival of intracellular human pathogens like Chlamydia pneumoniae but also control plasticity of iNOS+ M1 macrophage during the course of infection and render them refractory for immune stimulation. Treatment of Th1 primed macrophages with birinapant (IAP-specific antagonist) inhibited NO generation and relevant proteins involved in innate immune signaling. Accordingly, birinapant promoted hypoxia, angiogenesis, and tumor-induced M2 polarization of iNOS+ M1 macrophages. Interestingly, birinapant-driven changes in immune signaling were accompanied with changes in the expression of various proteins involved in the metabolism, and thus revealing the new role of IAPs in immune metabolic reprogramming in committed macrophages. Taken together, our study reveals the significance of IAP targeting approaches (Smac mimetic compounds) for the management of infectious and inflammatory diseases relying on macrophage plasticity. KW - apoptosis KW - macrophages immunobiology KW - inflammation mediators KW - polarization KW - infection KW - hypothalamus Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197484 SN - 1664-3224 VL - 8 IS - 1792 ER - TY - JOUR A1 - Wajant, Harald T1 - Molecular mode of action of TRAIL receptor agonists—common principles and their translational exploitation JF - Cancers N2 - Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application. KW - antibody KW - antibody fusion proteins KW - apoptosis KW - cancer therapy KW - cell death KW - death receptors KW - TNF superfamily KW - TNF receptor superfamily KW - TRAIL Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202416 VL - 11 IS - 7 ER - TY - JOUR A1 - Wajant, Harald T1 - Molecular mode of action of TRAIL receptor agonists—common principles and their translational exploitation JF - Cancers N2 - Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application. KW - antibody KW - antibody fusion proteins KW - apoptosis KW - cancer therapy KW - cell death KW - death receptors KW - TNF superfamily KW - TNF receptor superfamily KW - TRAIL Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201833 N1 - Zugriff gesperrt. Zugriff auf den Volltext erhalten Sie unter https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-202416 VL - 11 IS - 7 ER - TY - JOUR A1 - Wajant, Harald A1 - Siegmund, Daniela T1 - TNFR1 and TNFR2 in the control of the life and death balance of macrophages JF - Frontiers in Cell and Developmental Biology N2 - Macrophages stand in the first line of defense against a variety of pathogens but are also involved in the maintenance of tissue homeostasis. To fulfill their functions macrophages sense a broad range of pathogen- and damage-associated molecular patterns (PAMPs/DAMPs) by plasma membrane and intracellular pattern recognition receptors (PRRs). Intriguingly, the overwhelming majority of PPRs trigger the production of the pleiotropic cytokine tumor necrosis factor-alpha (TNF). TNF affects almost any type of cell including macrophages themselves. TNF promotes the inflammatory activity of macrophages but also controls macrophage survival and death. TNF exerts its activities by stimulation of two different types of receptors, TNF receptor-1 (TNFR1) and TNFR2, which are both expressed by macrophages. The two TNF receptor types trigger distinct and common signaling pathways that can work in an interconnected manner. Based on a brief general description of major TNF receptor-associated signaling pathways, we focus in this review on research of recent years that revealed insights into the molecular mechanisms how the TNFR1-TNFR2 signaling network controls the life and death balance of macrophages. In particular, we discuss how the TNFR1-TNFR2 signaling network is integrated into PRR signaling. KW - apoptosis KW - necroptosis KW - TNF KW - TNFR1 KW - TNFR2 KW - ripk1 KW - ripk3 KW - caspase-8 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201551 VL - 7 IS - 91 ER - TY - JOUR A1 - Scheurer, Mario Joachim Johannes A1 - Brands, Roman Camillus A1 - El-Mesery, Mohamed A1 - Hartmann, Stefan A1 - Müller-Richter, Urs Dietmar Achim A1 - Kübler, Alexander Christian A1 - Seher, Axel T1 - The selection of NFκB inhibitors to block inflammation and induce sensitisation to FasL-induced apoptosis in HNSCC cell lines is critical for their use as a prospective cancer therapy JF - International Journal of Molecular Science N2 - Inflammation is a central aspect of tumour biology and can contribute significantly to both the origination and progression of tumours. The NFκB pathway is one of the most important signal transduction pathways in inflammation and is, therefore, an excellent target for cancer therapy. In this work, we examined the influence of four NFκB inhibitors — Cortisol, MLN4924, QNZ and TPCA1 — on proliferation, inflammation and sensitisation to apoptosis mediated by the death ligand FasL in the HNSCC cell lines PCI1, PCI9, PCI13, PCI52 and SCC25 and in the human dermal keratinocyte cell line HaCaT. We found that the selection of the inhibitor is critical to ensure that cells do not respond by inducing counteracting activities in the context of cancer therapy, e.g., the extreme IL-8 induction mediated by MLN4924 or FasL resistance mediated by Cortisol. However, TPCA1 was qualified by this in vitro study as an excellent therapeutic mediator in HNSCC by four positive qualities: (1) proliferation was inhibited at low μM-range concentrations; (2) TNFα-induced IL-8 secretion was blocked; (3) HNSCC cells were sensitized to TNFα-induced cell death; and (4) FasL-mediated apoptosis was not disrupted. KW - HNSCC KW - NFκB KW - inhibitor KW - TPCA1 KW - apoptosis KW - inflammation KW - TNFα KW - FasL Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201524 SN - 1422-0067 VL - 20 IS - 6 ER - TY - JOUR A1 - Fathy, Moustafa A1 - Fawzy, Michael Atef A1 - Hintzsche, Henning A1 - Nikaido, Toshio A1 - Dandekar, Thomas A1 - Othman, Eman M. T1 - Eugenol exerts apoptotic effect and modulates the sensitivity of HeLa cells to cisplatin and radiation JF - Molecules N2 - Eugenol is a phytochemical present in different plant products, e.g., clove oil. Traditionally, it is used against a number of different disorders and it was suggested to have anticancer activity. In this study, the activity of eugenol was evaluated in a human cervical cancer (HeLa) cell line and cell proliferation was examined after treatment with various concentrations of eugenol and different treatment durations. Cytotoxicity was tested using lactate dehydrogenase (LDH) enzyme leakage. In order to assess eugenol’s potential to act synergistically with chemotherapy and radiotherapy, cell survival was calculated after eugenol treatment in combination with cisplatin and X-rays. To elucidate its mechanism of action, caspase-3 activity was analyzed and the expression of various genes and proteins was checked by RT-PCR and western blot analyses. Eugenol clearly decreased the proliferation rate and increased LDH release in a concentration- and time-dependent manner. It showed synergistic effects with cisplatin and X-rays. Eugenol increased caspase-3 activity and the expression of Bax, cytochrome c (Cyt-c), caspase-3, and caspase-9 and decreased the expression of B-cell lymphoma (Bcl)-2, cyclooxygenase-2 (Cox-2), and interleukin-1 beta (IL-1β) indicating that eugenol mainly induced cell death by apoptosis. In conclusion, eugenol showed antiproliferative and cytotoxic effects via apoptosis and also synergism with cisplatin and ionizing radiation in the human cervical cancer cell line. KW - eugenol KW - HeLa cells KW - cisplatin KW - radiation KW - apoptosis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193227 SN - 1420-3049 VL - 24 IS - 21 ER - TY - JOUR A1 - Effenberger, Madlen A1 - Bommert, Kathryn S. A1 - Kunz, Viktoria A1 - Kruk, Jessica A1 - Leich, Ellen A1 - Rudelius, Martina A1 - Bargou, Ralf A1 - Bommert, Kurt T1 - Glutaminase inhibition in multiple myeloma induces apoptosis via MYC degradation JF - Oncotarget N2 - Multiple Myeloma (MM) is an incurable hematological malignancy affecting millions of people worldwide. As in all tumor cells both glucose and more recently glutamine have been identified as important for MM cellular metabolism, however there is some dispute as to the role of glutamine in MM cell survival. Here we show that the small molecule inhibitor compound 968 effectively inhibits glutaminase and that this inhibition induces apoptosis in both human multiple myeloma cell lines (HMCLs) and primary patient material. The HMCL U266 which does not express MYC was insensitive to both glutamine removal and compound 968, but ectopic expression of MYC imparted sensitivity. Finally, we show that glutamine depletion is reflected by rapid loss of MYC protein which is independent of MYC transcription and post translational modifications. However, MYC loss is dependent on proteasomal activity, and this loss was paralleled by an equally rapid induction of apoptosis. These findings are in contrast to those of glucose depletion which largely affected rates of proliferation in HMCLs, but had no effects on either MYC expression or viability. Therefore, inhibition of glutaminolysis is effective at inducing apoptosis and thus serves as a possible therapeutic target in MM. KW - Multiple Myeloma KW - glutaminase inhibition KW - apoptosis KW - MYC Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170168 VL - 8 IS - 49 ER - TY - JOUR A1 - Rodríguez-Mari, Adriana A1 - Wilson, Catherine A1 - Titus, Tom A. A1 - Canestro, Cristian A1 - BreMiller, Ruth A. A1 - Yan, Yi-Lin A1 - Nanda, Indrajit A1 - Johnston, Adam A1 - Kanki, John P. A1 - Gray, Erin M. A1 - He, Xinjun A1 - Spitsbergen, Jan A1 - Schindler, Detlev A1 - Postlethwait, John H. T1 - Roles of brca2 (fancd1) in Oocyte Nuclear Architecture, Gametogenesis, Gonad Tumors, and Genome Stability in Zebrafish JF - PLoS Genetics N2 - Functional near-infrared spectroscopy (fNIRS) is an established optical neuroimaging method for measuring functional hemodynamic responses to infer neural activation. However, the impact of individual anatomy on the sensitivity of fNIRS measuring hemodynamics within cortical gray matter is still unknown. By means of Monte Carlo simulations and structural MRI of 23 healthy subjects (mean age: (25.0 +/- 2.8) years), we characterized the individual distribution of tissue-specific NIR-light absorption underneath 24 prefrontal fNIRS channels. We, thereby, investigated the impact of scalp-cortex distance (SCD), frontal sinus volume as well as sulcal morphology on gray matter volumes (V(gray)) traversed by NIR-light, i.e. anatomy-dependent fNIRS sensitivity. The NIR-light absorption between optodes was distributed describing a rotational ellipsoid with a mean penetration depth of (23.6 +/- 0.7) mm considering the deepest 5% of light. Of the detected photon packages scalp and bone absorbed (96.4 +/- 9: 7)% and V(gray) absorbed (3.1 +/- 1.8)% of the energy. The mean V(gray) volume (1.1 +/- 0.4)cm(3) was negatively correlated (r = - .76) with the SCD and frontal sinus volume (r = - .57) and was reduced by 41.5% in subjects with relatively large compared to small frontal sinus. Head circumference was significantly positively correlated with the mean SCD (r = .46) and the traversed frontal sinus volume (r = .43). Sulcal morphology had no significant impact on V(gray). Our findings suggest to consider individual SCD and frontal sinus volume as anatomical factors impacting fNIRS sensitivity. Head circumference may represent a practical measure to partly control for these sources of error variance. KW - oocytes KW - zebrafish KW - genetic causes of cancer KW - testes KW - apoptosis KW - gonads KW - sperm KW - embryos Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142285 VL - 7 IS - 3 ER - TY - JOUR A1 - Shi, Yaoyao A1 - Kuai, Yue A1 - Lei, Lizhen A1 - Weng, Yuanyuan A1 - Berberich-Siebelt, Friederike A1 - Zhang, Xinxia A1 - Wang, Jinjie A1 - Zhou, Yuan A1 - Jiang, Xin A1 - Ren, Guoping A1 - Pan, Hongyang A1 - Mao, Zhengrong A1 - Zhou, Ren T1 - The feedback loop of LITAF and BCL6 is involved in regulating apoptosis in B cell non-Hodgkin's-lymphoma JF - Oncotarget N2 - Dysregulation of the apoptotic pathway is widely recognized as a key step in lymphomagenesis. Notably, LITAF was initially identified as a p53-inducible gene, subsequently implicated as a tumor suppressor. Our previous study also showed LITAF to be methylated in 89.5% B-NHL samples. Conversely, deregulated expression of BCL6 is a pathogenic event in many lymphomas. Interestingly, our study found an oppositional expression of LITAF and BCL6 in B-NHL. In addition, LITAF was recently identified as a novel target gene of BCL6. Therefore, we sought to explore the feedback loop between LITAF and BCL6 in B-NHL. Here, our data for the first time show that LITAF can repress expression of BCL6 by binding to Region A (−87 to +65) containing a putative LITAF-binding motif (CTCCC) within the BCL6 promoter. Furthermore, the regulation of BCL6 targets (PRDM1 or c-Myc) by LITAF may be associated with B-cell differentiation. Results also demonstrate that ectopic expression of LITAF induces cell apoptosis, activated by releasing cytochrome c, cleaving PARP and caspase 3 in B-NHL cells whereas knockdown of LITAF robustly protected cells from apoptosis. Interestingly, BCL6, in turn, could reverse cell apoptosis mediated by LITAF. Collectively, our findings provide a novel apoptotic regulatory pathway in which LITAF, as a transcription factor, inhibits the expression of BCL6, which leads to activation of the intrinsic mitochondrial pathway and tumor apoptosis. Our study is expected to provide a possible biomarker as well as a target for clinical therapies to promote tumor cell apoptosis. KW - LITAF KW - BCL6 KW - apoptosis KW - lymphoma KW - B-cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166500 VL - 7 IS - 47 ER - TY - JOUR A1 - Hintzsche, Henning A1 - Montag, Gracia A1 - Stopper, Helga T1 - Induction of micronuclei by four cytostatic compounds in human hematopoietic stem cells and human lymphoblastoid TK6 cells JF - Scientific Reports N2 - For mutagenicity testing, primary lymphocytes or mammalian cell lines are employed. However, the true target for carcinogenic action of mutagenic chemicals may be stem cells. Since hematopoietic cancers induced by chemical agents originate at the hematopoietic stem cell (HSC) stage and since one of the side effects of chemotherapeutic cancer treatment is the induction of secondary tumors, often leukemias, HSC may be a suitable cell system. We compared the sensitivity of HSC with the genotoxicity testing cell line TK6 for chromosomal mutations. HSC were less sensitive than TK6 cells for the genotoxic effects of the model genotoxins and chemotherapeutic agents doxorubicin, vinblastine, methyl methanesulfonate (MMS) and equally sensitive for mitomycin C (MMC). However, loss of viability after mitomycin C treatment was higher in HSC than in TK6 cells. Among the factors that may influence sensitivity for genomic damage, the generation or response to reactive oxygen species (ROS) and the effectiveness of DNA damage response can be discussed. Here we show that HSC can be used in a standard micronucleus test protocol for chromosomal mutations and that their sensitivity was not higher than that of a classical testing cell line. KW - apoptosis KW - haematopoietic stem cells KW - TK6 cells KW - micronuclei Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176210 VL - 8 IS - 3371 ER - TY - JOUR A1 - Rauert, H. A1 - Stühmer, T. A1 - Bargou, R. A1 - Wajant, H. A1 - Siegmund, D. T1 - TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms JF - Cell Death and Disease N2 - The huge majority of myeloma cell lines express TNFR2 while a substantial subset of them failed to show TNFR1 expression. Stimulation of TNFR1 in the TNFR1-expressing subset of MM cell lines had no or only a very mild effect on cellular viability. Surprisingly, however, TNF stimulation enhanced cell death induction by CD95L and attenuated the apoptotic effect of TRAIL. The contrasting regulation of TRAIL- and CD95L-induced cell death by TNF could be traced back to the concomitant NFjBmediated upregulation of CD95 and the antiapoptotic FLIP protein. It appeared that CD95 induction, due to its strength, overcompensated a rather moderate upregulation of FLIP so that the net effect of TNF-induced NFjB activation in the context of CD95 signaling is pro-apoptotic. TRAIL-induced cell death, however, was antagonized in response to TNF because in this context only the induction of FLIP is relevant. Stimulation of TNFR2 in myeloma cells leads to TRAF2 depletion. In line with this, we observed cell death induction in TNFR1-TNFR2-costimulated JJN3 cells. Our studies revealed that the TNF-TNF receptor system adjusts the responsiveness of the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms that generate a highly context-dependent net effect on myeloma cell survival KW - apoptosis KW - CD95 KW - multiple myeloma KW - NFkB KW - TNF KW - TRAIL KW - NF-Kappa-B KW - Tumor-necrosis-factor KW - Factor receptor KW - Factor-alpha KW - Activation KW - Polymorphisms KW - Inhibitor KW - Promoter KW - Transcription KW - Expression Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133486 VL - 2 ER - TY - JOUR A1 - Chen, Shasha A1 - Lotz, Christopher A1 - Roewer, Norbert A1 - Broscheit, Jens-Albert T1 - Comparison of volatile anesthetic-induced preconditioning in cardiac and cerebral system: molecular mechanisms and clinical aspects JF - European Journal of Medical Research N2 - Volatile anesthetic-induced preconditioning ( APC) has shown to have cardiac and cerebral protective properties in both pre-clinical models and clinical trials. Interestingly, accumulating evidences demonstrate that, except from some specific characters, the underlying molecular mechanisms of APC-induced protective effects in myocytes and neurons are very similar; they share several major intracellular signaling pathways, including mediating mitochondrial function, release of inflammatory cytokines and cell apoptosis. Among all the experimental results, cortical spreading depolarization is a relative newly discovered cellular mechanism of APC, which, however, just exists in central nervous system. Applying volatile anesthetic preconditioning to clinical practice seems to be a promising cardio- and neuroprotective strategy. In this review, we also summarized and discussed the results of recent clinical research of APC. Despite all the positive experimental evidences, large-scale, long-term, more precisely controlled clinical trials focusing on the perioperative use of volatile anesthetics for organ protection are still needed. KW - APC KW - ischemia-reperfusion injury KW - mitochondria KW - apoptosis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175509 VL - 23 IS - 10 ER - TY - JOUR A1 - Wunsch, Marie A1 - Caspell, Richard A1 - Kuerten, Stefanie A1 - Lehmann, Paul V. A1 - Sundararaman, Srividya T1 - Serial measurements of apoptotic cell numbers provide better acceptance criterion for PBMC quality than a single measurement prior to the T cell assay JF - Cells N2 - As soon as Peripheral Blood Mononuclear Cells (PBMC) are isolated from whole blood, some cells begin dying. The rate of apoptotic cell death is increased when PBMC are shipped, cryopreserved, or stored under suboptimal conditions. Apoptotic cells secrete cytokines that suppress inflammation while promoting phagocytosis. Increased numbers of apoptotic cells in PBMC may modulate T cell functions in antigen-triggered T cell assays. We assessed the effect of apoptotic bystander cells on a T cell ELISPOT assay by selectively inducing B cell apoptosis using α-CD20 mAbs. The presence of large numbers of apoptotic B cells did not affect T cell functionality. In contrast, when PBMC were stored under unfavorable conditions, leading to damage and apoptosis in the T cells as well as bystander cells, T cell functionality was greatly impaired. We observed that measuring the number of apoptotic cells before plating the PBMC into an ELISPOT assay did not reflect the extent of PBMC injury, but measuring apoptotic cell frequencies at the end of the assay did. Our data suggest that measuring the numbers of apoptotic cells prior to and post T cell assays may provide more stringent PBMC quality acceptance criteria than measurements done only prior to the start of the assay. KW - T cell assay KW - apoptosis KW - acceptance KW - viability KW - ELISPOT Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150213 VL - 4 IS - 1 ER - TY - JOUR A1 - Yin, Jun A1 - Brocher, Jan A1 - Fischer, Utz A1 - Winkler, Christoph T1 - Mutant Prpf31 causes pre-mRNA splicing defects and rod photoreceptor cell degeneration in a zebrafish model for Retinitis pigmentosa JF - Molecular neurodegeneration N2 - Background: Retinitis pigmentosa (RP) is an inherited eye disease characterized by the progressive degeneration of rod photoreceptor cells. Mutations in pre-mRNA splicing factors including PRPF31 have been identified as cause for RP, raising the question how mutations in general factors lead to tissue specific defects. Results: We have recently shown that the zebrafish serves as an excellent model allowing the recapitulation of key events of RP. Here we use this model to investigate two pathogenic mutations in PRPF31, SP117 and AD5, causing the autosomal dominant form of RP. We show that SP117 leads to an unstable protein that is mislocalized to the rod cytoplasm. Importantly, its overexpression does not result in photoreceptor degeneration suggesting haploinsufficiency as the underlying cause in human RP patients carrying SP117. In contrast, overexpression of AD5 results in embryonic lethality, which can be rescued by wild-type Prpf31. Transgenic retina-specific expression of AD5 reveals that stable AD5 protein is initially localized in the nucleus but later found in the cytoplasm concurrent with progressing rod outer segment degeneration and apoptosis. Importantly, we show for the first time in vivo that retinal transcripts are wrongly spliced in adult transgenic retinas expressing AD5 and exhibiting increased apoptosis in rod photoreceptors. Conclusion: Our data suggest that distinct mutations in Prpf31 can lead to photoreceptor degeneration through different mechanisms, by haploinsufficiency or dominant-negative effects. Analyzing the AD5 effects in our animal model in vivo, our data imply that aberrant splicing of distinct retinal transcripts contributes to the observed retina defects. KW - Factor gene PRPF31 KW - TRI-SNRNP KW - Transgenic zebrafish KW - Homebox gene KW - Chinese family KW - Mutations KW - RP11 KW - Expression KW - Disease KW - Protein KW - Retinitis pigmentosa (RP) KW - PRPF31 KW - AD5 mutation KW - SP117 mutation KW - haploinsufficiency KW - dominant-negative KW - rod degeneration KW - apoptosis KW - splicing defect Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141090 VL - 6 IS - 56 ER - TY - JOUR A1 - Becker, Philip P. A1 - Rau, Monika A1 - Schmitt, Johannes A1 - Malsch, Carolin A1 - Hammer, Christian A1 - Bantel, Heike A1 - Müllhaupt, Beat A1 - Geier, Andreas T1 - Performance of serum microRNAs -122, -192 and -21 as biomarkers in patients with non-alcoholic steatohepatitis JF - PLoS ONE N2 - Objectives Liver biopsies are the current gold standard in non-alcoholic steatohepatitis (NASH) diagnosis. Their invasive nature, however, still carries an increased risk for patients' health. The development of non-invasive diagnostic tools to differentiate between bland steatosis (NAFL) and NASH remains crucial. The aim of this study is the evaluation of investigated circulating microRNAs in combination with new targets in order to optimize the discrimination of NASH patients by non-invasive serum biomarkers. Methods Serum profiles of four microRNAs were evaluated in two cohorts consisting of 137 NAFLD patients and 61 healthy controls. In a binary logistic regression model microRNAs of relevance were detected. Correlation of microRNA appearance with known biomarkers like ALT and CK18-Asp396 was evaluated. A simplified scoring model was developed, combining the levels of microRNA in circulation and CK18-Asp396 fragments. Receiver operating characteristics were used to evaluate the potential of discriminating NASH. Results The new finding of our study is the different profile of circulating miR-21 in NASH patients (p<0.0001). Also, it validates recently published results of miR-122 and miR-192 to be differentially regulated in NAFL and NASH. Combined microRNA expression profiles with CK18-Asp396 fragment level scoring model had a higher potential of NASH prediction compared to other risk biomarkers (AUROC = 0.83, 95% CI = 0.754-0.908; p<0.001). Evaluation of score model for NAFL (Score = 0) and NASH (Score = 4) had shown high rates of sensitivity (91%) and specificity (83%). Conclusions Our study defines candidates for a combined model of miRNAs and CK18-Asp396 levels relevant as a promising expansion for diagnosis and in turn treatment of NASH. KW - fatty liver disease KW - independent marker KW - expression KW - injury KW - NAFLD KW - circulating micrornas KW - caspase activation KW - fibrosis KW - miR-122 KW - apoptosis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145147 VL - 10 IS - 11 ER - TY - JOUR A1 - Klingseisen, Laura A1 - Ehrenschwender, Martin A1 - Heigl, Ulrike A1 - Wajant, Harald A1 - Hehlgans, Thomas A1 - Schütze, Stefan A1 - Schneider-Brachert, Wulf T1 - E3-14.7K Is Recruited to TNF-Receptor 1 and Blocks TNF Cytolysis Independent from Interaction with Optineurin JF - PLoS One N2 - Escape from the host immune system is essential for intracellular pathogens. The adenoviral protein E3-14.7K (14.7K) is known as a general inhibitor of tumor necrosis factor (TNF)-induced apoptosis. It efficiently blocks TNF-receptor 1 (TNFR1) internalization but the underlying molecular mechanism still remains elusive. Direct interaction of 14.7K and/or associated proteins with the TNFR1 complex has been discussed although to date not proven. In our study, we provide for the first time evidence for recruitment of 14.7K and the 14.7K interacting protein optineurin to TNFR1. Various functions have been implicated for optineurin such as regulation of receptor endocytosis, vesicle trafficking, regulation of the nuclear factor kappa B (NF-kappa B) pathway and antiviral signaling. We therefore hypothesized that binding of optineurin to 14.7K and recruitment of both proteins to the TNFR1 complex is essential for protection against TNF-induced cytotoxic effects. To precisely dissect the individual role of 14.7K and optineurin, we generated and characterized a 14.7K mutant that does not confer TNF-resistance but is still able to interact with optineurin. In H1299 and KB cells expressing 14.7K wild-type protein, neither decrease in cell viability nor cleavage of caspases was observed upon stimulation with TNF. In sharp contrast, cells expressing the non-protective mutant of 14.7K displayed reduced viability and cleavage of initiator and effector caspases upon TNF treatment, indicating ongoing apoptotic cell death. Knockdown of optineurin in 14.7K expressing cells did not alter the protective effect as measured by cell viability and caspase activation. Taken together, we conclude that optineurin despite its substantial role in vesicular trafficking, endocytosis of cell surface receptors and recruitment to the TNFR1 complex is dispensable for the 14.7K-mediated protection against TNF-induced apoptosis. KW - 14.7K KW - tumor necrosis factor KW - NF-kappa-B KW - E3 14.7-kilodalton protein KW - myosin-VI KW - apoptosis KW - cells KW - compartmentalization KW - inhibitor KW - binding Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135687 VL - 7 IS - 6 ER - TY - JOUR A1 - Lagler, Charlotte A1 - El-Mesery, Mohamed A1 - Kübler, Alexander Christian A1 - Müller-Richter, Urs Dietmar Achim A1 - Stühmer, Thorsten A1 - Nickel, Joachim A1 - Müller, Thomas Dieter A1 - Wajant, Harald A1 - Seher, Axel T1 - The anti-myeloma activity of bone morphogenetic protein 2 predominantly relies on the induction of growth arrest and is apoptosis-independent JF - PLoS ONE N2 - Multiple myeloma (MM), a malignancy of the bone marrow, is characterized by a pathological increase in antibody-producing plasma cells and an increase in immunoglobulins (plasmacytosis). In recent years, bone morphogenetic proteins (BMPs) have been reported to be activators of apoptotic cell death in neoplastic B cells in MM. Here, we use bone morphogenetic protein 2 (BMP2) to show that the "apoptotic" effect of BMPs on human neoplastic B cells is dominated by anti-proliferative activities and cell cycle arrest and is apoptosis-independent. The anti-proliferative effect of BMP2 was analysed in the human cell lines KMS12-BM and L363 using WST-1 and a Coulter counter and was confirmed using CytoTox assays with established inhibitors of programmed cell death (zVAD-fmk and necrostatin-1). Furthermore, apoptotic activity was compared in both cell lines employing western blot analysis for caspase 3 and 8 in cells treated with BMP2 and FasL. Additionally, expression profiles of marker genes of different cell death pathways were analysed in both cell lines after stimulation with BMP2 for 48h using an RT-PCR-based array. In our experiments we observed that there was rather no reduction in absolute cell number, but cells stopped proliferating following treatment with BMP2 instead. The time frame (48–72 h) after BMP2 treatment at which a reduction in cell number is detectable is too long to indicate a directly BMP2-triggered apoptosis. Moreover, in comparison to robust apoptosis induced by the approved apoptotic factor FasL, BMP2 only marginally induced cell death. Consistently, neither the known inhibitor of apoptotic cell death zVAD-fmk nor the necroptosis inhibitor necrostatin-1 was able to rescue myeloma cell growth in the presence of BMP2. KW - apoptosis KW - gene expression KW - necrotic cell death KW - multiple myeloma KW - cell metabolism KW - cell cycle and cell division KW - B cells Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158993 VL - 12 IS - 10 ER - TY - JOUR A1 - Sanges, C. A1 - Scheuermann, C. A1 - Zahedi, R. P. A1 - Sickmann, A. A1 - Lamberti, A. A1 - Migliaccio, N. A1 - Baljuls, A. A1 - Marra, M. A1 - Zappavigna, S. A1 - Rapp, U. A1 - Abbruzzese, A. A1 - Caraglia, M. A1 - Arcari, P. T1 - Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells JF - Cell Death & Disease N2 - We identified eukaryotic translation elongation factor 1A (eEF1A) Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and of apoptosis of human cancer cells. Mass spectrometry identified in vitro S21 and T88 as phosphorylation sites mediated by B-Raf but not C-Raf on eEF1A1 whereas S21 was phosphorylated on eEF1A2 by both B-and C-Raf. Interestingly, S21 belongs to the first eEF1A GTP/GDP-binding consensus sequence. Phosphorylation of S21 was strongly enhanced when both eEF1A isoforms were preincubated prior the assay with C-Raf, suggesting that the eEF1A isoforms can heterodimerize thus increasing the accessibility of S21 to the phosphate. Overexpression of eEF1A1 in COS 7 cells confirmed the phosphorylation of T88 also in vivo. Compared with wt, in COS 7 cells overexpressed phosphodeficient (A) and phospho-mimicking (D) mutants of eEF1A1 (S21A/D and T88A/D) and of eEF1A2 (S21A/D), resulted less stable and more rapidly proteasome degraded. Transfection of S21 A/D eEF1A mutants in H1355 cells increased apoptosis in comparison with the wt isoforms. It indicates that the blockage of S21 interferes with or even supports C-Raf induced apoptosis rather than cell survival. Raf-mediated regulation of this site could be a crucial mechanism involved in the functional switching of eEF1A between its role in protein biosynthesis and its participation in other cellular processes. KW - signal transduction KW - mass spectrometry KW - elongation KW - protein docking KW - factor EEF1A2 KW - cancer-cells KW - lung cancer KW - EF-1A KW - Raf kinases KW - aminoacyl-transfer-RNA KW - tyrosine phosphorylation KW - factor 1-alpha KW - nucleotide exchange KW - polyarcylamide gels KW - chain KW - apoptosis KW - ubiquitin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134673 VL - 3 IS - e276 ER - TY - JOUR A1 - Othman, Eman M. A1 - Naseem, Muhammed A1 - Awad, Eman A1 - Dandekar, Thomas A1 - Stopper, Helga T1 - The Plant Hormone Cytokinin Confers Protection against Oxidative Stress in Mammalian Cells JF - PLoS One N2 - Modulating key dynamics of plant growth and development, the effects of the plant hormone cytokinin on animal cells gained much attention recently. Most previous studies on cytokinin effects on mammalian cells have been conducted with elevated cytokinin concentration (in the μM range). However, to examine physiologically relevant dose effects of cytokinins on animal cells, we systematically analyzed the impact of kinetin in cultured cells at low and high concentrations (1nM-10μM) and examined cytotoxic and genotoxic conditions. We furthermore measured the intrinsic antioxidant activity of kinetin in a cell-free system using the Ferric Reducing Antioxidant Power assay and in cells using the dihydroethidium staining method. Monitoring viability, we looked at kinetin effects in mammalian cells such as HL60 cells, HaCaT human keratinocyte cells, NRK rat epithelial kidney cells and human peripheral lymphocytes. Kinetin manifests no antioxidant activity in the cell free system and high doses of kinetin (500 nM and higher) reduce cell viability and mediate DNA damage in vitro. In contrast, low doses (concentrations up to 100 nM) of kinetin confer protection in cells against oxidative stress. Moreover, our results show that pretreatment of the cells with kinetin significantly reduces 4-nitroquinoline 1-oxide mediated reactive oxygen species production. Also, pretreatment with kinetin retains cellular GSH levels when they are also treated with the GSH-depleting agent patulin. Our results explicitly show that low kinetin doses reduce apoptosis and protect cells from oxidative stress mediated cell death. Future studies on the interaction between cytokinins and human cellular pathway targets will be intriguing. KW - DNA damage KW - apoptosis KW - oxidative stress KW - fluorescence recovery after photobleaching KW - lymphocytes KW - antioxidants KW - cell staining KW - cytokinins Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147983 VL - 11 IS - 12 ER - TY - JOUR A1 - Stolpmann, K. A1 - Brinkmann, J. A1 - Salzmann, S. A1 - Genkinger, D. A1 - Fritsche, E. A1 - Hutzler, C. A1 - Wajant, H. A1 - Luch, A. A1 - Henkler, F. T1 - Activation of the aryl hydrocarbon receptor sensitises human keratinocytes for CD95L-and TRAIL-induced apoptosis JF - Cell Death & Disease N2 - In this study, we have analysed the apoptotic effects of the ubiquitous environmental toxin benzo[ a] pyrene (BP) in HaCaT cells and human keratinocytes. Although prolonged exposure to BP was not cytotoxic on its own, a strong enhancement of CD95 (Fas)-mediated apoptosis was observed with BP at concentrations activating the aryl hydrocarbon receptor (AhR). Importantly, the ultimately mutagenic BP-metabolite, that is, (+)-anti-BP-7,8-diol-9,10-epoxide (BPDE), failed to enhance CD95-mediated cell death, suggesting that the observed pro-apoptotic effect of BP is neither associated with DNA adducts nor DNA-damage related signalling. CD95-induced apoptosis was also enhanced by beta-naphtoflavone, a well-known agonist of the AhR that does not induce DNA damage, thus suggesting a crucial role for AhR activation. Consistently, BP failed to sensitise for CD95L-induced apoptosis in AhR knockdown HaCaT cells. Furthermore, inhibition of CYP1A1 and/or 1B1 expression did not affect the pro-apoptotic crosstalk. Exposure to BP did not increase expression of CD95, but led to augmented activation of caspase-8. Enhancement of apoptosis was also observed with the TRAIL death receptors that activate caspase-8 and apoptosis by similar mechanisms as CD95. Together, these observations indicate an interference of AhR signalling with the activity of receptor-associated signalling intermediates that are shared by CD95 and TRAIL receptors. Our data thus suggest that AhR agonists can enhance cytokine-mediated adversity upon dermal exposure. KW - CD95 KW - HaCaT cells KW - growth-factor receptor KW - cell death KW - mitochondrial dysfunction KW - mediated apoptosis KW - FAS KW - dermatitis KW - pathways KW - skin KW - progression KW - aryl hydrocarbon receptor (AhR) KW - apoptosis KW - benzo[a]pyrene KW - human keratinocytes Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133501 VL - 3 IS - e388 ER - TY - JOUR A1 - Rasche, Leo A1 - Duell, Johannes A1 - Morgner, Charlotte A1 - Chatterjee, Manik A1 - Hensel, Frank A1 - Rosenwald, Andreas A1 - Einsele, Hermann A1 - Topp, Max S. A1 - Brändlein, Stephanie T1 - The Natural Human IgM Antibody PAT-SM6 Induces Apoptosis in Primary Human Multiple Myeloma Cells by Targeting Heat Shock Protein GRP78 JF - PLoS ONE N2 - In contrast to other haematological malignancies, targeted immunotherapy has not entered standard treatment regimens for de novo or relapsed multiple myeloma (MM) yet. While a number of IgG-formatted monoclonal antibodies are currently being evaluated in clinical trials in MM, our study aimed to investigate whether the fully human IgM monoclonal antibody PAT-SM6 that targets a tumour-specific variant of the heat shock protein GRP78 might be an attractive candidate for future immunotherapeutic approaches. We here show that GRP78 is stably and consistently expressed on the surface on tumour cells from patients with de novo, but also relapsed MM and that binding of PAT-SM6 to MM cells can specifically exert cytotoxic effects on malignant plasma cells, whereas non-malignant cells are not targeted. We demonstrate that the induction of apoptosis and, to a lesser extent, complement dependent cytotoxicity is the main mode of action of PAT-SM6, whereas antibody dependent cellular cytotoxicity does not appear to contribute to the cytotoxic properties of this antibody. Given the favourable safety profile of PAT-SM6 in monkeys, but also in a recent phase I trial in patients with malignant melanoma, our results form the basis for a planned phase I study in patients with relapsed MM. KW - cytotoxicity KW - apoptosis KW - immunohistochemistry techniques KW - enzyme-linked immunoassays KW - multiple myeloma KW - cell staining KW - cell binding KW - complement system Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130125 VL - 8 IS - 5 ER - TY - JOUR A1 - Pachel, Christina A1 - Mathes, Denise A1 - Bayer, Barbara A1 - Dienesch, Charlotte A1 - Wangorsch, Gaby A1 - Heitzmann, Wolfram A1 - Lang, Isabell A1 - Ardehali, Hossein A1 - Ertl, Georg A1 - Dandekar, Thomas A1 - Wajant, Harald A1 - Frantz, Stefan T1 - Exogenous Administration of a Recombinant Variant of TWEAK Impairs Healing after Myocardial Infarction by Aggravation of Inflammation JF - PLoS ONE N2 - Background: Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factorinducible 14 (Fn14) are upregulated after myocardial infarction (MI) in both humans and mice. They modulate inflammation and the extracellular matrix, and could therefore be important for healing and remodeling after MI. However, the function of TWEAK after MI remains poorly defined. Methods and results: Following ligation of the left coronary artery, mice were injected twice per week with a recombinant human serum albumin conjugated variant of TWEAK (HSA-Flag-TWEAK), mimicking the activity of soluble TWEAK. Treatment with HSA-Flag-TWEAK resulted in significantly increased mortality in comparison to the placebo group due to myocardial rupture. Infarct size, extracellular matrix remodeling, and apoptosis rates were not different after MI. However, HSA-Flag-TWEAK treatment increased infiltration of proinflammatory cells into the myocardium. Accordingly, depletion of neutrophils prevented cardiac ruptures without modulating all-cause mortality. Conclusion: Treatment of mice with HSA-Flag-TWEAK induces myocardial healing defects after experimental MI. This is mediated by an exaggerated neutrophil infiltration into the myocardium. KW - apoptosis KW - myocardial infarction KW - neutrophils KW - cytokines KW - inflammation KW - myocardium KW - heart KW - extracellular matrix Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129889 VL - 8 IS - 11 ER - TY - JOUR A1 - Huang, Bei A1 - Belharazem, Djeda A1 - Li, Li A1 - Kneitz, Susanne A1 - Schnabel, Philipp A. A1 - Rieker, Ralf J. A1 - Körner, Daniel A1 - Nix, Wilfried A1 - Schalke, Berthold A1 - Müller-Hermelink, Hans Konrad A1 - Ott, German A1 - Rosenwald, Andreas A1 - Ströbel, Philipp A1 - Marx, Alexander T1 - Anti-apoptotic signature in thymic squamous cell carcinomas – functional relevance of anti-apoptotic BIRC3 expression in the thymic carcinoma cell line 1889c JF - Frontiers in Oncology N2 - The molecular pathogenesis of thymomas and thymic arcinomas (TCs) is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and TCs, suggesting that other oncogenic principles might be important.This made us re-analyze historic expression data obtained in a spectrumof thymomas and thymic squamous cell carcinomas (TSCCs) with a custom-made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC. KW - gene expression KW - MTCH2 KW - targeted KW - myasthenia gravis KW - apoptosis KW - thymus KW - thymoma KW - thymic carcinoma Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132214 VL - 3 IS - 316 ER - TY - JOUR A1 - Rukoyatkina, N. A1 - Mindukshev, I. A1 - Walter, U. A1 - Gambaryan, S. T1 - Dual role of the p38 \(MAPK/cPLA_2\) pathway in the regulation of platelet apoptosis induced by ABT-737 and strong platelet agonists JF - Cell Death & Disease N2 - p38 Mitogen-activated protein (MAP) kinase is involved in the apoptosis of nucleated cells. Although platelets are anucleated cells, apoptotic proteins have been shown to regulate platelet lifespan. However, the involvement of p38 MAP kinase in platelet apoptosis is not yet clearly defined. Therefore, we investigated the role of p38 MAP kinase in apoptosis induced by a mimetic of BH3-only proteins, ABT-737, and in apoptosis-like events induced by such strong platelet agonists as thrombin in combination with convulxin (Thr/Cvx), both of which result in p38 MAP kinase phosphorylation and activation. A p38 inhibitor (SB202190) inhibited the apoptotic events induced by ABT-737 but did not influence those induced by Thr/Cvx. The inhibitor also reduced the phosphorylation of cytosolic phospholipase \(A_2\) (cPLA2), an established p38 substrate, induced by ABT-737 or Thr/Cvx. ABT-737, but not Thr/Cvx, induced the caspase 3-dependent cleavage and inactivation of cPLA2. Thus, p38 MAPK promotes ABT-737-induced apoptosis by inhibiting the cPLA2/arachidonate pathway. We also show that arachidonic acid (AA) itself and in combination with Thr/Cvx or ABT-737 at low concentrations prevented apoptotic events, whereas at high concentrations it enhanced such events. Our data support the hypothesis that the p38 MAPK-triggered arachidonate pathway serves as a defense mechanism against apoptosis under physiological conditions. KW - cPLA2 KW - platelet KW - apoptosis KW - p38 MAP kinase Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128783 VL - 4 IS - e931 ER - TY - JOUR A1 - El-Mesery, M. A1 - Trebing, J. A1 - Schafer, V. A1 - Weisenberger, D. A1 - Siegmund, D. A1 - Wajant, H. T1 - CD40-directed scFv-TRAIL fusion proteins induce CD40-restricted tumor cell death and activate dendritic cells JF - Cell Death & Disease N2 - Targeted cancer therapy concepts often aim at the induction of adjuvant antitumor immunity or stimulation of tumor cell apoptosis. There is further evidence that combined application of immune stimulating and tumor apoptosis-inducing compounds elicits a synergistic antitumor effect. Here, we describe the development and characterization of bifunctional fusion proteins consisting of a single-chain variable fragment (scFv) domain derived from the CD40-specific monoclonal antibody G28-5 that is fused to the N-terminus of stabilized trimeric soluble variants of the death ligand TNF-related apoptosis-inducing ligand (TRAIL). As shown before by us and others for other cell surface antigen-targeted scFv-TRAIL fusion proteins, scFv:G28-TRAIL displayed an enhanced capacity to induce apoptosis upon CD40 binding. Studies with scFv:G28 fusion proteins of TRAIL mutants that discriminate between the two TRAIL death receptors, TRAILR1 and TRAILR2, further revealed that the CD40 binding-dependent mode of apoptosis induction of scFv:G28-TRAIL is operable with each of the two TRAIL death receptors. Binding of scFv:G28-TRAIL fusion proteins to CD40 not only result in enhanced TRAIL death receptor signaling but also in activation of the targeted CD40 molecule. In accordance with the latter, the scFv:G28-TRAIL fusion proteins triggered strong CD40-mediated maturation of dendritic cells. The CD40-targeted TRAIL fusion proteins described in this study therefore represent a novel type of bifunctional fusion proteins that couple stimulation of antigen presenting cells and apoptosis induction. KW - dendritic cells KW - apoptosis KW - CD40 KW - TRAIL Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128777 VL - 4 IS - e916 ER - TY - JOUR A1 - Schlereth, Katharina A1 - Heyl, Charlotte A1 - Krampitz, Anna-Maria A1 - Mernberger, Marco A1 - Finkernagel, Florian A1 - Scharfe, Maren A1 - Jarek, Michael A1 - Leich, Ellen A1 - Rosenwald, Andreas A1 - Stiewe, Thorsten T1 - Characterization of the p53 Cistrome - DNA Binding Cooperativity Dissects p53's Tumor Suppressor Functions JF - PLOS Genetics N2 - p53 protects us from cancer by transcriptionally regulating tumor suppressive programs designed to either prevent the development or clonal expansion of malignant cells. How p53 selects target genes in the genome in a context-and tissue-specific manner remains largely obscure. There is growing evidence that the ability of p53 to bind DNA in a cooperative manner prominently influences target gene selection with activation of the apoptosis program being completely dependent on DNA binding cooperativity. Here, we used ChIP-seq to comprehensively profile the cistrome of p53 mutants with reduced or increased cooperativity. The analysis highlighted a particular relevance of cooperativity for extending the p53 cistrome to non-canonical binding sequences characterized by deletions, spacer insertions and base mismatches. Furthermore, it revealed a striking functional separation of the cistrome on the basis of cooperativity; with low cooperativity genes being significantly enriched for cell cycle and high cooperativity genes for apoptotic functions. Importantly, expression of high but not low cooperativity genes was correlated with superior survival in breast cancer patients. Interestingly, in contrast to most p53-activated genes, p53-repressed genes did not commonly contain p53 binding elements. Nevertheless, both the degree of gene activation and repression were cooperativity-dependent, suggesting that p53-mediated gene repression is largely indirect and mediated by cooperativity-dependently transactivated gene products such as CDKN1A, E2F7 and non-coding RNAs. Since both activation of apoptosis genes with non-canonical response elements and repression of pro-survival genes are crucial for p53's apoptotic activity, the cistrome analysis comprehensively explains why p53-induced apoptosis, but not cell cycle arrest, strongly depends on the intermolecular cooperation of p53 molecules as a possible safeguard mechanism protecting from accidental cell killing. KW - cell-cycle arrest KW - gene expression KW - breast cancer KW - human genome KW - transcriptional repression KW - consensus DNA KW - in-vivo KW - apoptosis KW - network KW - damage Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127579 SN - 1553-7404 VL - 9 IS - 8 ER - TY - JOUR A1 - Hohenauer, Tobias A1 - Berking, Carola A1 - Schmidt, Andreas A1 - Haferkamp, Sebastian A1 - Senft, Daniela A1 - Kammerbauer, Claudia A1 - Fraschka, Sabine A1 - Graf, Saskia Anna A1 - Irmler, Martin A1 - Beckers, Johannes A1 - Flaig, Michael A1 - Aigner, Achim A1 - Höbel, Sabrina A1 - Hoffmann, Franziska A1 - Hermeking, Heiko A1 - Rothenfusser, Simon A1 - Endres, Stefan A1 - Ruzicka, Thomas A1 - Besch, Robert T1 - The neural crest transcription factor Brn3a is expressed in melanoma and required for cell cycle progression and survival JF - EMBO Molecular Medicine N2 - Pigment cells and neuronal cells both are derived from the neural crest. Here, we describe the Pit-Oct-Unc (POU) domain transcription factor Brn3a, normally involved in neuronal development, to be frequently expressed in melanoma, but not in melanocytes and nevi. RNAi-mediated silencing of Brn3a strongly reduced the viability of melanoma cell lines and decreased tumour growth in vivo. In melanoma cell lines, inhibition of Brn3a caused DNA double-strand breaks as evidenced by Mre11/Rad50-containing nuclear foci. Activated DNA damage signalling caused stabilization of the tumour suppressor p53, which resulted in cell cycle arrest and apoptosis. When Brn3a was ectopically expressed in primary melanocytes and fibroblasts, anchorage-independent growth was increased. In tumourigenic melanocytes and fibroblasts, Brn3a accelerated tumour growth in vivo. Furthermore, Brn3a cooperated with proliferation pathways such as oncogenic BRAF, by reducing oncogene-induced senescence in non-malignant melanocytes. Together, these results identify Brn3a as a new factor in melanoma that is essential for melanoma cell survival and that promotes melanocytic transformation and tumourigenesis. KW - oncogene-induced senescence KW - BRN-3A KW - DNA KW - DNA damage KW - tumourigenesis KW - P53 KW - in-vitro KW - neural crest factors KW - family KW - apoptosis KW - melanoma KW - BRAF mutations KW - domain Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122193 SN - 1757-4676 VL - 5 ER - TY - JOUR A1 - Schmidt, Sebastian A1 - Liu, Guoxing A1 - Liu, Guilai A1 - Yang, Wenting A1 - Honisch, Sabina A1 - Pantelakos, Stavros A1 - Stournaras, Christos A1 - Hönig, Arnd A1 - Lang, Florian T1 - Enhanced Orai1 and STIM1 expression as well as store operated \(Ca^{2+}\) entry in therapy resistant ovary carcinoma cells JF - Oncotarget N2 - Mechanisms underlying therapy resistance of tumor cells include protein kinase Akt. Putative Akt targets include store-operated \(Ca^{2+}\)-entry (SOCE) accomplished by pore forming ion channel unit Orai1 and its regulator STIM1. We explored whether therapy resistant (A2780cis) differ from therapy sensitive (A2780) ovary carcinoma cells in Akt, Orai1, and STIM1 expression, \(Ca^{2+}\)-signaling and cell survival following cisplatin (100µM) treatment. Transcript levels were quantified with RT-PCR, protein abundance with Western blotting, cytosolic \(Ca^{2+}\)-activity ([\(Ca^{2+}\)]i) with Fura-2-fluorescence, SOCE from increase of [\(Ca^{2+}\)]i following \(Ca^{2+}\)-readdition after Ca2+-store depletion, and apoptosis utilizing flow cytometry. Transcript levels of Orai1 and STIM1, protein expression of Orai1, STIM1, and phosphorylated Akt, as well as SOCE were significantly higher in A2780cis than A2780 cells. SOCE was decreased by Akt inhibitor III (SH-6, 10µM) in A2780cis but not A2780 cells and decreased in both cell lines by Orai1 inhibitor 2-aminoethoxydiphenyl borate (2-ABP, 50µM). Phosphatidylserine exposure and late apoptosis following cisplatin treatment were significantly lower in A2780cis than A2780 cells, a difference virtually abolished by SH-6 or 2-ABP. In conclusion, Orai1/STIM1 expression and function are increased in therapy resistant ovary carcinoma cells, a property at least in part due to enhanced Akt activity and contributing to therapy resistance in those cells. KW - Ca2+ release activated Ca2+ channel KW - SOCE KW - Akt KW - SH-6 KW - 2-APB KW - apoptosis Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121423 UR - www.impactjournals.com/oncotarget VL - 5 IS - 13 ER - TY - JOUR A1 - Kuger, Sebastian A1 - Flentje, Michael A1 - Djuzenova, Cholpon S. T1 - Simultaneous perturbation of the MAPK and the PI3K/mTOR pathways does not lead to increased radiosensitization JF - Radiation Oncology N2 - Background The mitogen-activated protein kinases (MAPK) and the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways are intertwined on various levels and simultaneous inhibition reduces tumorsize and prolonges survival synergistically. Furthermore, inhibiting these pathways radiosensitized cancer cells in various studies. To assess, if phenotypic changes after perturbations of this signaling network depend on the genetic background, we integrated a time series of the signaling data with phenotypic data after simultaneous MAPK/ERK kinase (MEK) and PI3K/mTOR inhibition and ionizing radiation (IR). Methods The MEK inhibitor AZD6244 and the dual PI3K/mTOR inhibitor NVP-BEZ235 were tested in glioblastoma and lung carcinoma cells, which differ in their mutational status in the MAPK and the PI3K/mTOR pathways. Effects of AZD6244 and NVP-BEZ235 on the proliferation were assessed using an ATP assay. Drug treatment and IR effects on the signaling network were analyzed in a time-dependent manner along with measurements of phenotypic changes in the colony forming ability, apoptosis, autophagy or cell cycle. Results Both inhibitors reduced the tumor cell proliferation in a dose-dependent manner, with NVP-BEZ235 revealing the higher anti-proliferative potential. Our Western blot data indicated that AZD6244 and NVP-BEZ235 perturbed the MAPK and PI3K/mTOR signaling cascades, respectively. Additionally, we confirmed crosstalks and feedback loops in the pathways. As shown by colony forming assay, the AZD6244 moderately radiosensitized cancer cells, whereas NVP-BEZ235 caused a stronger radiosensitization. Combining both drugs did not enhance the NVP-BEZ235-mediated radiosensitization. Both inhibitors caused a cell cycle arrest in the G1-phase, whereas concomitant IR and treatment with the inhibitors resulted in cell line- and drug-specific cell cycle alterations. Furthermore, combining both inhibitors synergistically enhanced a G1-phase arrest in sham-irradiated glioblastoma cells and induced apoptosis and autophagy in both cell lines. Conclusion Perturbations of the MEK and the PI3K pathway radiosensitized tumor cells of different origins and the combination of AZD6244 and NVP-BEZ235 yielded cytostatic effects in several tumor entities. However, this is the first study assessing, if the combination of both drugs also results in synergistic effects in terms of radiosensitivity. Our study demonstrates that simultaneous treatment with both pathway inhibitors does not lead to synergistic radiosensitization but causes cell line-specific effects. KW - autophagy KW - radiosensitivity KW - NVP-BEZ235 KW - AZD6244 KW - cell cycle arrest KW - apoptosis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126104 VL - 10 IS - 214 ER - TY - JOUR A1 - Loeffler, Claudia A1 - Loeffler, Jürgen A1 - Kobsar, Anna A1 - Speer, Christian P. A1 - Eigenthaler, Martin T1 - Septic Vs Colonizing Group B Streptococci Differentially Regulate Inflammation and Apoptosis in Human Coronary Artery Endothelial Cells - a Pilot Study JF - Journal of Pediatrics and Neonatal Care N2 - In this pilot study, we exemplify differences between a septic and a colonizing GBS strain during their interaction with Endothelial Cells by evaluating cytokine levels, surface and apoptosis-related molecules. These preliminary results indicate that in vitro infection using an exemplary septic GBS strain results in diminished activation of the innate immune response. KW - streptococci KW - apoptosis KW - inflammation KW - endothelial cells KW - innate immunity KW - early onset sepsis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125596 VL - 2 IS - 2 ER - TY - JOUR A1 - Subbarayal, Prema A1 - Karunakaran, Karthika A1 - Winkler, Ann-Cathrin A1 - Rother, Marion A1 - Gonzalez, Erik A1 - Meyer, Thomas F. A1 - Rudel, Thomas T1 - EphrinA2 Receptor (EphA2) Is an Invasion and Intracellular Signaling Receptor for Chlamydia trachomatis JF - PLoS Pathogens N2 - The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and induces apoptosis resistance. KW - membrane proteins KW - chlamydia infection KW - chlamydia trachomatis KW - chlamydia KW - HeLa cells KW - apoptosis KW - host cells KW - membrane receptor signaling Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125566 VL - 11 IS - 4 ER - TY - JOUR A1 - Masic, Anita A1 - Valencia Hernandez, Ana Maria A1 - Hazra, Sudipta A1 - Glaser, Jan A1 - Holzgrabe, Ulrike A1 - Hazra, Banasri A1 - Schurigt, Uta T1 - Cinnamic Acid Bornyl Ester Derivatives from Valeriana wallichii Exhibit Antileishmanial In Vivo Activity in Leishmania major-Infected BALB/c Mice JF - PLoS One N2 - Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from self-healing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drug-resistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches. KW - leishmania major KW - promastigotes KW - apoptosis KW - mitochondria KW - parasitic diseases KW - leishmania KW - leishmaniasis KW - mouse models Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125354 VL - 10 IS - 11 ER - TY - JOUR A1 - Sanges, C. A1 - Scheuermann, C. A1 - Zahedi, R. P. A1 - Sickmann, A. A1 - Lamberti, A. A1 - Migliaccio, N. A1 - Baljuls, A. A1 - Marra, M. A1 - Zappavigna, S. A1 - Reinders, J. A1 - Rapp, U. A1 - Abbruzzese, A. A1 - Caraglia, M. A1 - Arcari, P. T1 - Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells JF - Cell Death and Disease N2 - We identified eukaryotic translation elongation factor 1A (eEF1A) Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and of apoptosis of human cancer cells. Mass spectrometry identified in vitro S21 and T88 as phosphorylation sites mediated by B-Raf but not C-Raf on eEF1A1 whereas S21 was phosphorylated on eEF1A2 by both B- and C-Raf. Interestingly, S21 belongs to the first eEF1A GTP/GDP-binding consensus sequence. Phosphorylation of S21 was strongly enhanced when both eEF1A isoforms were preincubated prior the assay with C-Raf, suggesting that the eEF1A isoforms can heterodimerize thus increasing the accessibility of S21 to the phosphate. Overexpression of eEF1A1 in COS 7 cells confirmed the phosphorylation of T88 also in vivo. Compared with wt, in COS 7 cells overexpressed phosphodeficient (A) and phospho-mimicking (D) mutants of eEF1A1 (S21A/D and T88A/D) and of eEF1A2 (S21A/D), resulted less stable and more rapidly proteasome degraded. Transfection of S21 A/D eEF1A mutants in H1355 cells increased apoptosis in comparison with the wt isoforms. It indicates that the blockage of S21 interferes with or even supports C-Raf induced apoptosis rather than cell survival. Raf-mediated regulation of this site could be a crucial mechanism involved in the functional switching of eEF1A between its role in protein biosynthesis and its participation in other cellular processes. KW - EF-1A KW - Raf kinases KW - signal transduction KW - apoptosis KW - ubiquitin KW - mass spectrometry Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124149 VL - 3 IS - e276 ER - TY - JOUR A1 - Trebing, J. A1 - El-Mesery, M. A1 - Schäfer, V. A1 - Weisenberger, D. A1 - Siegmund, D. A1 - Silence, K. A1 - Wajant, H. T1 - CD70-restricted specific activation of TRAILR1 or TRAILR2 using scFv-targeted TRAIL mutants JF - Cell Death & Disease N2 - To combine the CD27 stimulation inhibitory effect of blocking CD70 antibodies with an antibody-dependent cellular cytotoxicity (ADCC)-independent, cell death-inducing activity for targeting of CD70-expressing tumors, we evaluated here fusion proteins of the apoptosis-inducing TNF family member TRAIL and a single-chain variable fragment (scFv) derived from a high-affinity llama-derived anti-human CD70 antibody (lαhCD70). A fusion protein of scFv:lαhCD70 with TNC-TRAIL, a stabilized form of TRAIL, showed strongly enhanced apoptosis induction upon CD70 binding and furthermore efficiently interfered with CD70-CD27 interaction. Noteworthy, introduction of recently identified mutations that discriminate between TRAILR1 and TRAILR2 binding into the TRAIL part of scFv:lαhCD70-TNC-TRAIL resulted in TRAIL death receptor-specific fusion proteins with CD70-restricted activity. KW - apoptosis KW - CD27 KW - CD70 KW - scFv KW - TRAIL Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120078 VL - 5 ER - TY - JOUR A1 - Cardani, Diego A1 - Sardi, Claudia A1 - La Ferla, Barbara A1 - D'Orazio, Guiseppe A1 - Sommariva, Michele A1 - Marcucci, Fabrizio A1 - Olivero, Daniela A1 - Tagliabue, Elda A1 - Koepsell, Hermann A1 - Nicotra, Francesco A1 - Balsari, Andrea A1 - Rumio, Christiano T1 - Sodium glucose cotransporter 1 ligand BLF501 as a novel tool for management of gastrointestinal mucositis JF - Molecular Cancer N2 - Background: Recent studies demonstrated that engagement of sodium glucose transporter 1 (SGLT-1) by orally administered D-glucose protects the intestinal mucosa from lipopolysaccharide (LPS)-induced injury. We tested whether SGLT-1 engagement might protect the intestinal mucosa from doxorubicin (DXR)- and 5-fluorouracil (5-FU)-induced injury in animal models mimicking acute or chronic mucositis. Methods: Mice were treated intraperitoneally with DXR, alone or in combination with 5-FU, and orally with BLF501, a glucose-derived synthetic compound with high affinity for SGLT-1. Intestinal mucosal epithelium integrity was assessed by histological analysis, cellular proliferation assays, real-time PCR gene expression assays and Western blot assays. Student's t-test (paired two-tailed) and X-2 analyses were used for comparisons between groups. Differences were considered significant at p < 0.05. Results: BLF501 administration in mice treated with DXR and/or 5-FU decreased the injuries to the mucosa in terms of epithelial integrity and cellular proliferative ability. Co-treatment with BLF501 led to a normal expression and distribution of both zonula occludens-1 (ZO-1) and beta-catenin, which were underexpressed after treatment with either chemotherapeutic agent alone. BLF501 administration also restored normal expression of caspase-3 and ezrin/radixin/moesin (ERM), which were overexpressed after treatment with DXR and 5-FU. In SGLT1-/- mice, BLF501 had no detectable effects. BLF501 administration in wild-type mice with growing A431 tumors did not modify antitumor activity of DXR. Conclusions: BLF501-induced protection of the intestinal mucosa is a promising novel therapeutic approach to reducing the severity of chemotherapy-induced mucositis. KW - apoptosis KW - prevention KW - doxorubicin KW - cancer KW - gastrointestinal mucositis KW - SGLT-1 KW - synthetic D-glucose analogy KW - chemotherapy KW - inflammation KW - clinical practice guidelines KW - intestinal mucositis KW - epithelial cells KW - oral mucositis KW - gene-expression Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117352 SN - 1476-4598 VL - 13 IS - 23 ER - TY - JOUR A1 - Adam, Christian A1 - Baeurle, Anne A1 - Brodsky, Jeffrey L. A1 - Schrama, David A1 - Wipf, Peter A1 - Becker, Jürgen Christian A1 - Houben, Roland T1 - The HSP70 Modulator MAL3-101 Inhibits Merkel Cell Carcinoma N2 - Merkel Cell Carcinoma (MCC) is a rare and highly aggressive neuroendocrine skin cancer for which no effective treatment is available. MCC represents a human cancer with the best experimental evidence for a causal role of a polyoma virus. Large T antigens (LTA) encoded by polyoma viruses are oncoproteins, which are thought to require support of cellular heat shock protein 70 (HSP70) to exert their transforming activity. Here we evaluated the capability of MAL3-101, a synthetic HSP70 inhibitor, to limit proliferation and survival of various MCC cell lines. Remarkably, MAL3-101 treatment resulted in considerable apoptosis in 5 out of 7 MCC cell lines. While this effect was not associated with the viral status of the MCC cells, quantitative mRNA expression analysis of the known HSP70 isoforms revealed a significant correlation between MAL3-101 sensitivity and HSC70 expression, the most prominent isoform in all cell lines. Moreover, MAL3-101 also exhibited in vivo antitumor activity in an MCC xenograft model suggesting that this substance or related compounds are potential therapeutics for the treatment of MCC in the future. KW - apoptosis KW - cancer treatment KW - cell staining KW - cultured fibroplasts KW - heat shock response KW - membrans proteins KW - polymerase chain reaction Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112795 ER - TY - JOUR A1 - Kuger, Sebastian A1 - Cörek, Emre A1 - Polat, Bülent A1 - Kämmerer, Ulrike A1 - Flentje, Michael A1 - Djuzenova, Cholpon S. T1 - Novel PI3K and mTOR Inhibitor NVP-BEZ235 Radiosensitizes Breast Cancer Cell Lines under Normoxic and Hypoxic Conditions N2 - In the present study, we assessed, if the novel dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor NVP-BEZ235 radiosensitizes triple negative (TN) MDA-MB-231 and estrogen receptor (ER) positive MCF-7 cells to ionizing radiation under various oxygen conditions, simulating different microenvironments as occurring in the majority of breast cancers (BCs). Irradiation (IR) of BC cells cultivated in hypoxic conditions revealed increased radioresistance compared to normoxic controls. Treatment with NVP-BEZ235 completely circumvented this hypoxia-induced effects and radiosensitized normoxic, reoxygenated, and hypoxic cells to similar extents. Furthermore, NVP-BEZ235 treatment suppressed HIF-1α expression and PI3K/mTOR signaling, induced autophagy, and caused protracted DNA damage repair in both cell lines in all tested oxygen conditions. Moreover, after incubation with NVP-BEZ235, MCF-7 cells revealed depletion of phospho-AKT and considerable signs of apoptosis, which were signifi-cantly enhanced by radiation. Our findings clearly demonstrate that NVP-BEZ235 has a clinical relevant potential as a radiosensitizer in BC treatment. KW - Novel PI3K KW - NVP-BEZ235 KW - mTOR Inhibitor KW - radiosensibility KW - Akt KW - DNA repair protraction KW - apoptosis KW - hypoxia KW - autophagy Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112708 ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Hesbacher, Sonja A1 - Weyandt, Gerhard A1 - Vetter-Kauczok, Claudia S. A1 - Becker, Jürgen C. A1 - Motschenbacher, Stephanie A1 - Wobser, Marion A1 - Maier, Melissa A1 - Schmid, Corinna P. A1 - Houben, Roland T1 - p53 regulation by TRP2 is not pervasive in melanoma N2 - p53 is a central tumor suppressor protein and its inhibition is believed to be a prerequisite for cancer development. In approximately 50% of all malignancies this is achieved by inactivating mutations in the p53 gene. However, in several cancer entities, including melanoma, p53 mutations are rare. It has been recently proposed that tyrosinase related protein 2 (TRP2), a protein involved in melanin synthesis, may act as suppressor of the p53 pathway in melanoma. To scrutinize this notion we analyzed p53 and TRP2 expression by immunohistochemistry in 172 melanoma tissues and did not find any correlation. Furthermore, we applied three different TRP2 shRNAs to five melanoma cell lines and could not observe a target specific effect of the TRP2 knockdown on either p53 expression nor p53 reporter gene activity. Likewise, ectopic expression of TRP2 in a TRP2 negative melanoma cell line had no impact on p53 expression. In conclusion our data suggest that p53 repression critically controlled by TRP2 is not a general event in melanoma. KW - melanomas KW - melanoma cell KW - cell staining KW - histology KW - reporter genes KW - apoptosis KW - immunohistochemistry techniques KW - tumor suppressor genes Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111396 ER -