TY - JOUR A1 - Süß, Jasmin A1 - Wehner, Johannes G. A1 - Dostál, Jakub A1 - Engel, Volker A1 - Brixner, Tobias T1 - Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy JF - Journal of Physical Chemistry Letters N2 - We present a theoretical study on exciton–exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dostál et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process. KW - exciton-exciton KW - Exziton KW - Spektroskopie KW - EEA KW - 2Dimensionale Spektroskopie KW - exciton Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178420 UR - https://aip.scitation.org/doi/full/10.1063/1.5086151 N1 - This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in J. Süß et al., J. Chem. Phys. 150, 104304 (2019); https://doi.org/10.1063/1.5086151 and may be found at https://doi.org/10.1063/1.5086151. VL - 150 IS - 10 ER - TY - INPR A1 - Süß, Jasmin A1 - Wehner, Johannes G. A1 - Dostál, Jakub A1 - Engel, Volker A1 - Brixner, Tobias T1 - Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy T2 - Journal of Physical Chemistry Letters N2 - We present a theoretical study on exciton–exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dostál et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process. KW - Exziton KW - Spektroskopie KW - Exciton KW - 2Dimensionale Spektroskopie KW - EEA KW - exciton-exciton Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178482 UR - https://aip.scitation.org/doi/full/10.1063/1.5086151 N1 - This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in J. Süß et al.,J. Chem. Phys. 150, 104304 (2019); https://doi.org/10.1063/1.5086151 and may be found at https://doi.org/10.1063/1.5086151 ER -