TY - THES A1 - Forster, Johannes T1 - Variational Approach to the Modeling and Analysis of Magnetoelastic Materials T1 - Variationeller Zugang zu Modellierung und Analysis Magnetoelastischer Materialien N2 - This doctoral thesis is concerned with the mathematical modeling of magnetoelastic materials and the analysis of PDE systems describing these materials and obtained from a variational approach. The purpose is to capture the behavior of elastic particles that are not only magnetic but exhibit a magnetic domain structure which is well described by the micromagnetic energy and the Landau-Lifshitz-Gilbert equation of the magnetization. The equation of motion for the material’s velocity is derived in a continuum mechanical setting from an energy ansatz. In the modeling process, the focus is on the interplay between Lagrangian and Eulerian coordinate systems to combine elasticity and magnetism in one model without the assumption of small deformations. The resulting general PDE system is simplified using special assumptions. Existence of weak solutions is proved for two variants of the PDE system, one including gradient flow dynamics on the magnetization, and the other featuring the Landau-Lifshitz-Gilbert equation. The proof is based on a Galerkin method and a fixed point argument. The analysis of the PDE system with the Landau-Lifshitz-Gilbert equation uses a more involved approach to obtain weak solutions based on G. Carbou and P. Fabrie 2001. N2 - Die vorliegende Doktorarbeit beschäftigt sich mit der mathematischen Modellierung magnetoelastischer Materialien und der Analysis von Systemen partieller Differentialgleichungen für diese Materialien. Die Herleitung der partiellen Differentialgleichungen erfolgt mittels eines variationellen Zugangs. Ziel ist es, das Verhalten elastischer Teilchen zu beschreiben, welche nicht nur magnetisch sind, sondern sich durch eine magnetische Domänenstruktur auszeichnen. Diese Struktur wird beschrieben durch die mikromagnetische Energie und die Landau-Lifshitz-Gilbert Gleichung der Magnetisierung. Die Bewegungsgleichung für die Geschwindigkeit des Materials ist in einem kontinuumsmechanischen Setting von einer Energiegleichung abgeleitet. In der Modellierung liegt der Fokus auf dem Zusammenspiel von Lagrange’schen und Euler’schen Koordinaten, um Elastizität und Magnetismus in einem Modell zu kombinieren. Dies geschieht ohne die Annahme kleiner Deformationen. Das resultierende allgemeine System partieller Differentialgleichungen wird durch spezielle Annahmen vereinfacht und es wird die Existenz von schwachen Lösungen gezeigt. Der Beweis wird für zwei Varianten des Differentialgleichungssystems geführt. Das erste System enthält die Beschreibung der Dynamik der Magnetisierung mittels Gradientenfluss, im zweiten wird die Dynamik mittels Landau-Lifshitz-Gilbert Gleichung beschrieben. Schlüsselidee des Beweises ist ein Galerkin-Ansatz, kombiniert mit einem Fixpunkt-Argument. Zum Beweis der Existenz schwacher Lösungen des Systems mit Landau-Lifshitz-Gilbert Gleichung wird eine aufwändigere Methode herangezogen, welche auf einer Arbeit von G. Carbou und P. Fabrie aus 2001 beruht. KW - Magnetoelastizität KW - Mikromagnetismus KW - Mathematische Modellierung KW - Galerkin-Methode KW - Differentialgleichungssystem KW - Partielle Differentialgleichungen KW - Existenz schwacher Lösungen KW - PDEs KW - Mathematical modeling KW - Calculus of variations Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147226 ER - TY - THES A1 - Forster, Johannes T1 - Mathematical Modeling of Complex Fluids N2 - This thesis gives an overview over mathematical modeling of complex fluids with the discussion of underlying mechanical principles, the introduction of the energetic variational framework, and examples and applications. The purpose is to present a formal energetic variational treatment of energies corresponding to the models of physical phenomena and to derive PDEs for the complex fluid systems. The advantages of this approach over force-based modeling are, e.g., that for complex systems energy terms can be established in a relatively easy way, that force components within a system are not counted twice, and that this approach can naturally combine effects on different scales. We follow a lecture of Professor Dr. Chun Liu from Penn State University, USA, on complex fluids which he gave at the University of Wuerzburg during his Giovanni Prodi professorship in summer 2012. We elaborate on this lecture and consider also parts of his work and publications, and substantially extend the lecture by own calculations and arguments (for papers including an overview over the energetic variational treatment see [HKL10], [Liu11] and references therein). N2 - Die vorliegende Masterarbeit beschaeftigt sich mit der mathematischen Modellierung komplexer Fluessigkeiten. Nach einer Einfuehrung in das Thema der komplexen Fluessigkeiten werden grundlegende mechanische Prinzipien im zweiten Kapitel vorgestellt. Im Anschluss steht eine Einfuehrung in die Modellierung mit Hilfe von Energien und eines variationellen Ansatzes. Dieser wird im vierten Kapitel auf konkrete Beispiele komplexer Fluessigkeiten angewendet. Dabei werden zunaechst viskoelastische Materialien (z.B. Muskelmasse) angefuehrt und ein Modell fuer solche beschrieben, bei dem Eigenschaften von Festkoerpern und Fluessigkeiten miteinander kombiniert werden. Anschliessend untersuchen wir den Ursprung solcher Eigenschaften und die Auswirkungen von bestimmten Molekuelstrukturen auf das Verhalten der umgebenden Fluessigkeit. Dabei betrachten wir zunaechst ein Mehrskalen-Modell fuer Polymerfluessigkeiten und damit eine Kopplung mikroskopischer und makroskopischer Groessen. In einem dritten Beispiel beschaeftigen wir uns dann mit einem Model fuer nematische Fluessigkristalle, die in technischen Bereichen, wie beispielsweise der Displaytechnik, Anwendung finden. Geschlossen wird mit einem Ausblick auf weitere Anwendungsgebiete und mathematische Probleme. Wir folgen einer Vorlesung von Professor Dr. Chun Liu von der Penn State University, USA, die er im Sommer 2012 im Rahmen einer Giovanni-Prodi Gastprofessur an der Universitaet Wuerzburg ueber komplexe Fluessigkeiten gehalten hat. Bei der Ausarbeitung werden ebenfalls Teile seiner Veroeffentlichungen aufgegriffen und die Vorlesung durch eigene Rechnungen und Argumentationsschritte deutlich erweitert. KW - Variationsrechnung KW - Mathematische Modellierung KW - Kontinuumsmechanik KW - Inkompressibilität KW - Elastizität KW - Deformation KW - Festkörper KW - Flüssigkeit KW - Deformationsgradient KW - Newtonsches Kräftegleichgewicht KW - Komplexe Flüssigkeiten KW - Complex Fluids KW - Least Action Principle KW - Maximum Dissipation Principle KW - Modeling KW - Incompressibility Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-83533 ER -