TY - JOUR A1 - Yu, Leo A1 - Natarajan, Chandra M. A1 - Horikiri, Tomoyuki A1 - Langrock, Carsten A1 - Pelc, Jason S. A1 - Tanner, Michael G. A1 - Abe, Eisuke A1 - Maier, Sebastian A1 - Schneider, Christian A1 - Höfling, Sven A1 - Kamp, Martin A1 - Hadfield, Robert H. A1 - Fejer, Martin M. A1 - Yamamoto, Yoshihisa T1 - Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits JF - Nature Communications N2 - Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances. KW - atom KW - 1550 nm KW - up-conversion KW - heralded entanglement KW - emission KW - interface KW - generation KW - communication KW - downconversion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138677 VL - 6 ER - TY - JOUR A1 - Horikiri, Tomoyuki A1 - Yamaguchi, Makoto A1 - Kamide, Kenji A1 - Matsuo, Yasuhiro A1 - Byrnes, Tim A1 - Ishida, Natsuko A1 - Löffler, Andreas A1 - Höfling, Sven A1 - Shikano, Yutaka A1 - Ogawa, Tetsuo A1 - Forchel, Alfred A1 - Yamamoto, Yoshihisa T1 - High-energy side-peak emission of exciton-polariton condensates in high density regime JF - Scientific Reports N2 - In a standard semiconductor laser, electrons and holes recombine via stimulated emission to emit coherent light, in a process that is far from thermal equilibrium. Exciton-polariton condensates–sharing the same basic device structure as a semiconductor laser, consisting of quantum wells coupled to a microcavity–have been investigated primarily at densities far below the Mott density for signatures of Bose-Einstein condensation. At high densities approaching the Mott density, exciton-polariton condensates are generally thought to revert to a standard semiconductor laser, with the loss of strong coupling. Here, we report the observation of a photoluminescence sideband at high densities that cannot be accounted for by conventional semiconductor lasing. This also differs from an upper-polariton peak by the observation of the excitation power dependence in the peak-energy separation. Our interpretation as a persistent coherent electron-hole-photon coupling captures several features of this sideband, although a complete understanding of the experimental data is lacking. A full understanding of the observations should lead to a development in non-equilibrium many-body physics. KW - side-peak emission KW - exciton-polariton condensates KW - standard semiconductor laser Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167711 VL - 6 IS - 25655 ER -