TY - JOUR A1 - Zahnleiter, Diana A1 - Uebe, Steffen A1 - Ekici, Arif B. A1 - Hoyer, Juliane A1 - Wiesener, Antje A1 - Wieczorek, Dagmar A1 - Kunstmann, Erdmute A1 - Reis, André A1 - Doerr, Helmuth-Guenther A1 - Rauch, Anita A1 - Thiel, Christian T. T1 - Rare Copy Number Variants Are a Common Cause of Short Stature JF - PLoS Genetics N2 - Human growth has an estimated heritability of about 80%-90%. Nevertheless, the underlying cause of shortness of stature remains unknown in the majority of individuals. Genome-wide association studies (GWAS) showed that both common single nucleotide polymorphisms and copy number variants (CNVs) contribute to height variation under a polygenic model, although explaining only a small fraction of overall genetic variability in the general population. Under the hypothesis that severe forms of growth retardation might also be caused by major gene effects, we searched for rare CNVs in 200 families, 92 sporadic and 108 familial, with idiopathic short stature compared to 820 control individuals. Although similar in number, patients had overall significantly larger CNVs \((p-value <1 x 10^{-7})\). In a gene-based analysis of all non-polymorphic CNVs >50 kb for gene function, tissue expression, and murine knock-out phenotypes, we identified 10 duplications and 10 deletions ranging in size from 109 kb to 14 Mb, of which 7 were de novo (p < 0.03) and 13 inherited from the likewise affected parent but absent in controls. Patients with these likely disease causing 20 CNVs were smaller than the remaining group (p < 0.01). Eleven (55%) of these CNVs either overlapped with known microaberration syndromes associated with short stature or contained GWAS loci for height. Haploinsufficiency (HI) score and further expression profiling suggested dosage sensitivity of major growth-related genes at these loci. Overall 10% of patients carried a disease-causing CNV indicating that, like in neurodevelopmental disorders, rare CNVs are a frequent cause of severe growth retardation. KW - genetic skeletal disorders KW - microdeletion syndrome KW - mental retardation KW - growth failure KW - deletion KW - classification KW - association KW - mutations KW - genome KW - abnormalities Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127645 SN - 1553-7404 VL - 9 IS - 3 ER - TY - JOUR A1 - Mencacci, Niccoló E. A1 - Isaias, Ioannis U. A1 - Reich, Martin M. A1 - Ganos, Christos A1 - Plagnol, Vincent A1 - Polke, James M. A1 - Bras, Jose A1 - Hersheson, Joshua A1 - Stamelou, Maria A1 - Pittman, Alan M. A1 - Noyce, Alastair J. A1 - Mok, Kin Y. A1 - Opladen, Thomas A1 - Kunstmann, Erdmute A1 - Hodecker, Sybille A1 - Münchau, Alexander A1 - Volkmann, Jens A1 - Samnick, Samuel A1 - Sidle, Katie A1 - Nanji, Tina A1 - Sweeney, Mary G. A1 - Houlden, Henry A1 - Batla, Amit A1 - Zecchinelli, Anna L. A1 - Pezzoli, Gianni A1 - Marotta, Giorgio A1 - Lees, Andrew A1 - Alegria, Paulo A1 - Krack, Paul A1 - Cormier-Dequaire, Florence A1 - Lesage, Suzanne A1 - Brice, Alexis A1 - Heutink, Peter A1 - Gasser, Thomas A1 - Lubbe, Steven J. A1 - Morris, Huw R. A1 - Taba, Pille A1 - Koks, Sulev A1 - Majounie, Elisa A1 - Gibbs, J. Raphael A1 - Singleton, Andrew A1 - Hardy, John A1 - Klebe, Stephan A1 - Bhatia, Kailash P. A1 - Wood, Nicholas W. T1 - Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers JF - Brain N2 - GTP cyclohydrolase 1, encoded by the GCH1 gene, is an essential enzyme for dopamine production in nigrostriatal cells. Loss-of-function mutations in GCH1 result in severe reduction of dopamine synthesis in nigrostriatal cells and are the most common cause of DOPA-responsive dystonia, a rare disease that classically presents in childhood with generalized dystonia and a dramatic long-lasting response to levodopa. We describe clinical, genetic and nigrostriatal dopaminergic imaging ([(123)I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane single photon computed tomography) findings of four unrelated pedigrees with DOPA-responsive dystonia in which pathogenic GCH1 variants were identified in family members with adult-onset parkinsonism. Dopamine transporter imaging was abnormal in all parkinsonian patients, indicating Parkinson's disease-like nigrostriatal dopaminergic denervation. We subsequently explored the possibility that pathogenic GCH1 variants could contribute to the risk of developing Parkinson's disease, even in the absence of a family history for DOPA-responsive dystonia. The frequency of GCH1 variants was evaluated in whole-exome sequencing data of 1318 cases with Parkinson's disease and 5935 control subjects. Combining cases and controls, we identified a total of 11 different heterozygous GCH1 variants, all at low frequency. This list includes four pathogenic variants previously associated with DOPA-responsive dystonia (Q110X, V204I, K224R and M230I) and seven of undetermined clinical relevance (Q110E, T112A, A120S, D134G, I154V, R198Q and G217V). The frequency of GCH1 variants was significantly higher (Fisher's exact test P-value 0.0001) in cases (10/1318 = 0.75%) than in controls (6/5935 = 0.1%; odds ratio 7.5; 95% confidence interval 2.4-25.3). Our results show that rare GCH1 variants are associated with an increased risk for Parkinson's disease. These findings expand the clinical and biological relevance of GTP cycloydrolase 1 deficiency, suggesting that it not only leads to biochemical striatal dopamine depletion and DOPA-responsive dystonia, but also predisposes to nigrostriatal cell loss. Further insight into GCH1-associated pathogenetic mechanisms will shed light on the role of dopamine metabolism in nigral degeneration and Parkinson's disease. KW - DOPA-responsive-dystonia KW - GCH1 KW - Parkinson's disease KW - dopamine KW - exome sequencing Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121268 VL - 137 IS - 9 ER - TY - JOUR A1 - Kolokotronis, Konstantinos A1 - Pluta, Natalie A1 - Klopocki, Eva A1 - Kunstmann, Erdmute A1 - Messroghli, Daniel A1 - Maack, Christoph A1 - Tejman-Yarden, Shai A1 - Arad, Michael A1 - Rost, Simone A1 - Gerull, Brenda T1 - New Insights on Genetic Diagnostics in Cardiomyopathy and Arrhythmia Patients Gained by Stepwise Exome Data Analysis JF - Journal of Clinical Medicine N2 - Inherited cardiomyopathies are characterized by clinical and genetic heterogeneity that challenge genetic diagnostics. In this study, we examined the diagnostic benefit of exome data compared to targeted gene panel analyses, and we propose new candidate genes. We performed exome sequencing in a cohort of 61 consecutive patients with a diagnosis of cardiomyopathy or primary arrhythmia, and we analyzed the data following a stepwise approach. Overall, in 64% of patients, a variant of interest (VOI) was detected. The detection rate in the main sub-cohort consisting of patients with dilated cardiomyopathy (DCM) was much higher than previously reported (25/36; 69%). The majority of VOIs were found in disease-specific panels, while a further analysis of an extended panel and exome data led to an additional diagnostic yield of 13% and 5%, respectively. Exome data analysis also detected variants in candidate genes whose functional profile suggested a probable pathogenetic role, the strongest candidate being a truncating variant in STK38. In conclusion, although the diagnostic yield of gene panels is acceptable for routine diagnostics, the genetic heterogeneity of cardiomyopathies and the presence of still-unknown causes favor exome sequencing, which enables the detection of interesting phenotype–genotype correlations, as well as the identification of novel candidate genes. KW - cardiomyopathy KW - cardiogenetics KW - whole exome sequencing KW - targeted gene panel KW - candidate genes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236094 VL - 9 IS - 7 ER - TY - JOUR A1 - Weisschuh, Nicole A1 - Mayer, Anja K. A1 - Strom, Tim M. A1 - Kohl, Susanne A1 - Glöckle, Nicola A1 - Schubach, Max A1 - Andreasson, Sten A1 - Bernd, Antje A1 - Birch, David G. A1 - Hamel, Christian P. A1 - Heckenlively, John R. A1 - Jacobson, Samuel G. A1 - Kamme, Christina A1 - Kellner, Ulrich A1 - Kunstmann, Erdmute A1 - Maffei, Pietro A1 - Reiff, Charlotte M. A1 - Rohrschneider, Klaus A1 - Rosenberg, Thomas A1 - Rudolph, Günther A1 - Vámos, Rita A1 - Varsányi, Balázs A1 - Weleber, Richard G. A1 - Wissinger, Bernd T1 - Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing JF - PLoS ONE N2 - Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes. KW - mutation detection KW - retinal dystrophies KW - next generation sequencing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167398 VL - 11 IS - 1 ER - TY - JOUR A1 - Lorenz, Delia A1 - Musacchio, Thomas A1 - Kunstmann, Erdmute A1 - Grauer, Eva A1 - Pluta, Natalie A1 - Stock, Annika A1 - Speer, Christian P. A1 - Hebestreit, Helge T1 - A case report of Sanfilippo syndrome - the long way to diagnosis JF - BMC Neurology N2 - Background Mucopolysaccharidosis type III (Sanfilippo syndrome) is a lysosomal storage disorder, caused by a deficiency in the heparan-N-sulfatase enzyme involved in the catabolism of the glycosaminoglycan heparan sulfate. It is characterized by early nonspecific neuropsychiatric symptoms, followed by progressive neurocognitive impairment in combination with only mild somatic features. In this patient group with a broad clinical spectrum a significant genotype-phenotype correlation with some mutations leading to a slower progressive, attenuated course has been demonstrated. Case presentation Our patient had complications in the neonatal period and was diagnosed with Mucopolysaccharidosis IIIa only at the age of 28 years. He was compound heterozygous for the variants p.R245H and p.S298P, the latter having been shown to lead to a significantly milder phenotype. Conclusions The diagnostic delay is even more prolonged in this patient population with comorbidities and a slowly progressive course of the disease. KW - Mucopolysaccharidosis IIIa KW - diagnostic delay KW - genotype-phenotype correlation KW - p.S298P KW - p.R245H Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300465 VL - 22 IS - 1 ER -