TY - JOUR A1 - Fehrholz, Markus A1 - Bersani, Iliana A1 - Kramer, Boris W. A1 - Speer, Christian P. A1 - Kunzmann, Steffen T1 - Synergistic Effect of Caffeine and Glucocorticoids on Expression of Surfactant Protein B (SP-B) mRNA N2 - Administration of glucocorticoids and caffeine is a common therapeutic intervention in the neonatal period, but possible interactions between these substances are still unclear. The present study investigated the effect of caffeine and different glucocorticoids on expression of surfactant protein (SP)-B, crucial for the physiological function of pulmonary surfactant. We measured expression levels of SP-B, various SP-B transcription factors including erythroblastic leukemia viral oncogene homolog 4 (ErbB4) and thyroid transcription factor-1 (TTF-1), as well as the glucocorticoid receptor (GR) after administering different doses of glucocorticoids, caffeine, cAMP, or the phosphodiesterase-4 inhibitor rolipram in the human airway epithelial cell line NCI-H441. Administration of dexamethasone (1 mM) or caffeine (5 mM) stimulated SP-B mRNA expression with a maximal of 38.8611.1-fold and 5.261.4-fold increase, respectively. Synergistic induction was achieved after coadministration of dexamethasone (1 mM) in combination with caffeine (10 mM) (206659.7-fold increase, p,0.0001) or cAMP (1 mM) (2136111-fold increase, p = 0.0108). SP-B mRNA was synergistically induced also by administration of caffeine with hydrocortisone (87.9639.0), prednisolone (154666.8), and betamethasone (12366.4). Rolipram also induced SP-B mRNA (64.9621.0-fold increase). We detected a higher expression of ErbB4 and GR mRNA (7.0- and 1.7-fold increase, respectively), whereas TTF-1, Jun B, c-Jun, SP1, SP3, and HNF-3a mRNA expression was predominantly unchanged. In accordance with mRNA data, mature SP-B was induced significantly by dexamethasone with caffeine (13.869.0-fold increase, p = 0.0134). We found a synergistic upregulation of SP-B mRNA expression induced by co-administration of various glucocorticoids and caffeine, achieved by accumulation of intracellular cAMP. This effect was mediated by a caffeinedependent phosphodiesterase inhibition and by upregulation of both ErbB4 and the GR. These results suggested that caffeine is able to induce the expression of SP-transcription factors and affects the signaling pathways of glucocorticoids, amplifying their effects. Co-administration of caffeine and corticosteroids may therefore be of benefit in surfactant homeostasis. KW - Medizin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77927 ER - TY - JOUR A1 - Willems, Coen H. M. P. A1 - Urlichs, Florian A1 - Seidenspinner, Silvia A1 - Kunzmann, Steffen A1 - Speer, Christian P. A1 - Kramer, Boris W. T1 - Poractant alfa (Curosurf (R)) increases phagocytosis of apoptotic neutrophils by alveolar macrophages in vivo JF - Respiratory Research N2 - Background: Clearance of apoptotic neutrophils in the lung is an essential process to limit inflammation, since they could become a pro-inflammatory stimulus themselves. The clearance is partially mediated by alveolar macrophages, which phagocytose these apoptotic cells. The phagocytosis of apoptotic immune cells by monocytes in vitro has been shown to be augmented by several constituents of pulmonary surfactant, e. g. phospholipids and hydrophobic surfactant proteins. In this study, we assessed the influence of exogenous poractant alfa (Curosurf (R)) instillation on the in vivo phagocytosis of apoptotic neutrophils by alveolar macrophages. Methods: Poractant alfa (200 mg/kg) was instilled intratracheally in the lungs of three months old adult male C57/Black 6 mice, followed by apoptotic neutrophil instillation. Bronchoalveloar lavage was performed and alveolar macrophages and neutrophils were counted. Phagocytosis of apoptotic neutrophils was quantified by determining the number of apoptotic neutrophils per alveolar macrophages. Results: Exogenous surfactant increased the number of alveolar macrophages engulfing apoptotic neutrophils 2.6 fold. The phagocytosis of apoptotic neutrophils was increased in the presence of exogenous surfactant by a 4.7 fold increase in phagocytosed apoptotic neutrophils per alveolar macrophage. Conclusions: We conclude that the anti-inflammatory properties of surfactant therapy may be mediated in part by increased numbers of alveolar macrophages and increased phagocytosis of apoptotic neutrophils by alveolar macrophages. KW - preterm KW - surfactant protein-A KW - respiratory-distress-syndrome KW - synthetic surfactant KW - human monocytes KW - SIRP-alpha KW - lung KW - cells KW - inflammation KW - resolution KW - anti inflammation KW - drug therapy KW - surfactant Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130721 VL - 13 IS - 17 ER - TY - JOUR A1 - Neuhaus, Winfried A1 - Schlundt, Marian A1 - Fehrholz, Markus A1 - Ehrke, Alexander A1 - Kunzmann, Steffen A1 - Liebner, Stefan A1 - Speer, Christian P. A1 - Förster, Carola Y. T1 - Multiple Antenatal Dexamethasone Treatment Alters Brain Vessel Differentiation in Newborn Mouse Pups JF - PLoS One N2 - Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB) phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN) 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4). Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation. KW - endothelial cells KW - protein expression KW - central nervous system KW - mouse models KW - pregnancy KW - tight junctions KW - sheep KW - angiogenesis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125471 VL - 10 IS - 8 ER - TY - JOUR A1 - Neuhaus, Winfried A1 - Schlundt, Marian A1 - Fehrholz, Markus A1 - Ehrke, Alexander A1 - Kunzmann, Steffen A1 - Liebner, Stefan A1 - Speer, Christian P. A1 - Förster, Carola Y. T1 - Multiple antenatal dexamethasone treatment alters brain vessel differentiation in newborn mouse pups JF - PLoS ONE N2 - Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB) phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN) 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4). Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation. KW - preterm birth KW - fetal lung KW - corticosteroids KW - glucocorticoids KW - exposure KW - endothelial cells KW - in vitro KW - barrier KW - expression KW - rat Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148268 VL - 10 IS - 8 ER - TY - JOUR A1 - Neuhaus, Winfried A1 - Samwer, Fabian A1 - Kunzmann, Steffen A1 - Muellenbach, Ralph A1 - Wirth, Michael A1 - Speer, Christian P. A1 - Roewer, Norbert A1 - Förster, Carola T1 - Lung endothelial cells strengthen, but brain endothelial cells weaken barrier properties of a human alveolar epithelium cell culture model JF - Differentiation N2 - The blood-air barrier in the lung consists of the alveolar epithelium, the underlying capillary endothelium, their basement membranes and the interstitial space between the cell layers. Little is known about the interactions between the alveolar and the blood compartment. The aim of the present study was to gain first insights into the possible interplay between these two neighboured cell layers. We established an in vitro Transwell model of the alveolar epithelium based on human cell line H441 and investigated the influence of conditioned medium obtained from human lung endothelial cell line HPMEC-ST1.6R on the barrier properties of the H441 layers. As control for tissue specificity H441 layers were exposed to conditioned medium from human brain endothelial cell line hCMEC/D3. Addition of dexamethasone was necessary to obtain stable H441 cell layers. Moreover, dexamethasone increased expression of cell type I markers (caveolin-1, RAGE) and cell type II marker SP-B, whereas decreased the transepithelial electrical resistance (TEER) in a concentration dependent manner. Soluble factors obtained from the lung endothelial cell line increased the barrier significantly proven by TEER values and fluorescein permeability on the functional level and by the differential expression of tight junctional proteins on the molecular level. In contrast to this, soluble factors derived from brain endothelial cells weakened the barrier significantly. In conclusion, soluble factors from lung endothelial cells can strengthen the alveolar epithelium barrier in vitro, which suggests communication between endothelial and epithelial cells regulating the integrity of the blood-air barrier. KW - alveolar epithelium in vitro model, claudin-1, claudin-3, claudin-4, claudin-5 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90284 UR - http://www.sciencedirect.com/science/article/pii/S0301468112001144 VL - 84 IS - 4 ER - TY - JOUR A1 - Ruf, Katharina A1 - Demerath, Antonia A1 - Hebestreit, Helge A1 - Kunzmann, Steffen T1 - Is sweat testing for cystic fibrosis feasible in patients with down syndrome? JF - BMC Pulmonary Medicine N2 - Background: Recurrent airway infections are common in patients with Down's syndrome (DS). Hence, ruling out Cystic Fibrosis (CF) in these patients is often required. In the past, the value of sweat testing the gold standard to diagnose CF -has been questioned in DS as false positive results have been reported. However, these reports are based on measurements of sweat osmolality or sodium concentrations, not chloride concentrations. This study analyses sweat secretion rate and chloride concentration in sweat samples of patients with DS in comparison to healthy controls. Methods: We assessed sweat samples in 16 patients with DS and 16 healthy controls regarding sweat secretion rate (SSR) and sweat chloride concentration. Results: All measured chloride concentrations were within the normal range. The chloride concentrations were slightly, but not significantly lower in patients with DS (15,54 mmol/l (±4,47)) compared to healthy controls (18,31 mmol/l (±10,12)). While no gender gap in chloride concentration could be found, chloride concentration increased with age in both groups. Insufficient sweat was collected in 2 females with DS (12.5% of the study group) but not in an individual of the control group. A significant lower sweat secretion rate was found in the DS group (27,6 μl/30 min (± 12,18)) compared to the control group (42,7 μl/30 min (± 21,22)). In a sub-analysis, female patients produced significantly less sweat (20,8 ± 10,6 μl/30 min) than male patients with DS (36,4 ± 7,8 μl/30 min), which accounts for the difference between patients and controls. Furthermore, while the sweating secretion rate increased with age in the control group, it did not do so in the DS group. Once again this was due to female patients with DS, who did not show a significant increase of sweat secretion rate with age. Conclusions: Sweat chloride concentrations were within the normal range in patients with DS and therefore seem to be a reliable tool for testing for CF in these patients. Interestingly, we found a reduced sweat secretion rate in the DS group. Whether the last one has a functional and clinical counterpart, possibly due to a disturbed thermoregulation in DS patients, requires further investigation. KW - sweat secretion rate KW - sweat osmolality KW - gender gap KW - non-responder KW - thermoregulation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175519 VL - 18 IS - 8 ER - TY - JOUR A1 - Fehrholz, Markus A1 - Glaser, Kirsten A1 - Seidenspinner, Silvia A1 - Ottensmeier, Barbara A1 - Curstedt, Tore A1 - Speer, Christian P. A1 - Kunzmann, Steffen T1 - Impact of the New Generation Reconstituted Surfactant CHF5633 on Human CD4\(^+\) Lymphocytes JF - PLoS One N2 - Background Natural surfactant preparations, commonly isolated from porcine or bovine lungs, are used to treat respiratory distress syndrome in preterm infants. Besides biophysical effectiveness, several studies have documented additional immunomodulatory properties. Within the near future, synthetic surfactant preparations may be a promising alternative. CHF5633 is a new generation reconstituted synthetic surfactant preparation with defined composition, containing dipalmitoyl-phosphatidylcholine, palmitoyl-oleoyl-phosphatidylglycerol and synthetic analogs of surfactant protein (SP-) B and SP-C. While its biophysical effectiveness has been demonstrated in vitro and in vivo, possible immunomodulatory abilities are currently unknown. Aim The aim of the current study was to define a potential impact of CHF5633 and its single components on pro- and anti-inflammatory cytokine responses in human CD4\(^+\) lymphocytes. Methods Purified human CD4\(^+\) T cells were activated using anti CD3/CD28 antibodies and exposed to CHF5633, its components, or to the well-known animal-derived surfactant Poractant alfa (Curosurf®). Proliferative response and cell viability were assessed using flow cytometry and a methylthiazolyldiphenyltetrazolium bromide colorimetric assay. The mRNA expression of IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 was measured by quantitative PCR, while intracellular protein expression was assessed by means of flow cytometry. Results Neither CHF5633 nor any of its phospholipid components with or without SP-B or SP-C analogs had any influence on proliferative ability and viability of CD4\(^+\) lymphocytes under the given conditions. IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 mRNA as well as IFNγ, IL-2, IL-4 and IL-10 protein levels were unaffected in both non-activated and activated CD4+ lymphocytes after exposure to CHF5633 or its constituents compared to non-exposed controls. However, in comparison to Curosurf®, expression levels of anti-inflammatory IL-4 and IL-10 mRNA were significantly increased in CHF5633 exposed CD4\(^+\) lymphocytes. Conclusion For the first time, the immunomodulatory capacity of CHF5633 on CD4\(^+\) lymphocytes was evaluated. CHF5633 did not show any cytotoxicity on CD4\(^+\) cells. Moreover, our in vitro data indicate that CHF5633 does not exert unintended pro-inflammatory effects on non-activated and activated CD4+ T cells. As far as anti-inflammatory cytokines are concerned, it might lack an overall reductive ability in comparison to animal-derived surfactants, potentially leaving pro- and anti-inflammatory cytokine response in balance. KW - lymphocytes KW - surfactants KW - flow cytometry KW - monocytes KW - RNA isolation KW - T cells KW - cytokines KW - inflammation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146419 VL - 11 IS - 4 ER - TY - JOUR A1 - Laug, Roderich A1 - Fehrholz, Markus A1 - Schütze, Norbert A1 - Kramer, Boris W. A1 - Krump-Konvalinkova, Vera A1 - Speer, Christian P. A1 - Kunzmann, Steffen T1 - IFN-gamma and TNF-alpha synergize to inhibit CTGF expression in human lung endothelial cells N2 - Connective tissue growth factor (CTGF/CCN2) is an angiogenetic and profibrotic factor, acting downstream of TGF-b, involved in both airway- and vascular remodeling. While the T-helper 1 (Th1) cytokine interferon-gamma (IFN-c) is well characterized as immune-modulatory and anti-fibrotic cytokine, the role of IFN-c in lung endothelial cells (LEC) is less defined. Tumour necrosis factor alpha (TNF-a) is another mediator that drives vascular remodeling in inflammation by influencing CTGF expression. In the present study we investigated the influence of IFN-c and TNF-a on CTGF expression in human LEC (HPMEC-ST1.6R) and the effect of CTGF knock down on human LEC. IFN-c and TNF-a down-regulated CTGF in human LEC at the promoter-, transcriptional- and translational-level in a dose- and time-dependent manner. The inhibitory effect of IFN-c on CTGF-expression could be almost completely compensated by the Jak inhibitor AG-490, showing the involvement of the Jak-Stat signaling pathway. Besides the inhibitory effect of IFN-c and TNF-a alone on CTGF expression and LEC proliferation, these cytokines had an additive inhibitory effect on proliferation as well as on CTGF expression when administered together. To study the functional role of CTGF in LEC, endogenous CTGF expression was down-regulated by a lentiviral system. CTGF silencing in LEC by transduction of CTGF shRNA reduced cell proliferation, but did not influence the anti-proliferative effect of IFN-c and TNF-a. In conclusion, our data demonstrated that CTGF was negatively regulated by IFN-c in LEC in a Jak/Stat signaling pathway-dependent manner. In addition, an additive effect of IFN-c and TNF-a on inhibition of CTGF expression and cell proliferation could be found. The inverse correlation between IFN-c and CTGF expression in LEC could mean that screwing the Th2 response to a Th1 response with an additional IFN-c production might be beneficial to avoid airway remodeling in asthma. KW - Medizin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76253 ER - TY - JOUR A1 - Fehrholz, Markus A1 - Seidenspinner, Silvia A1 - Kunzmann, Steffen T1 - Expression of surfactant protein B is dependent on cell density in H441 lung epithelial cells JF - PLoS ONE N2 - Background Expression of surfactant protein (SP)-B, which assures the structural stability of the pulmonary surfactant film, is influenced by various stimuli, including glucocorticoids; however, the role that cell-cell contact plays in SP-B transcription remains unknown. The aim of the current study was to investigate the impact of cell-cell contact on SP-B mRNA and mature SP-B expression in the lung epithelial cell line H441. Methods Different quantities of H441 cells per growth area were either left untreated or incubated with dexamethasone. The expression of SP-B, SP-B transcription factors, and tight junction proteins were determined by qPCR and immunoblotting. The influence of cell density on SP-B mRNA stability was investigated using the transcription inhibitor actinomycin D. Results SP-B mRNA and mature SP-B expression levels were significantly elevated in untreated and dexamethasone-treated H441 cells with increasing cell density. High cell density as a sole stimulus was found to barely have an impact on SP-B transcription factor and tight junction mRNA levels, while its stimulatory ability on SP-B mRNA expression could be mimicked using SP-B-negative cells. SP-B mRNA stability was significantly increased in high-density cells, but not by dexamethasone alone. Conclusion SP-B expression in H441 cells is dependent on cell-cell contact, which increases mRNA stability and thereby potentiates the glucocorticoid-mediated induction of transcription. Loss of cell integrity might contribute to reduced SP-B secretion in damaged lung cells via downregulation of SP-B transcription. Cell density-mediated effects should thus receive greater attention in future cell culture-based research. KW - messenger RNA KW - surfactants KW - epithelial cells KW - transcription factors KW - gene expression KW - tight junctions KW - adenocarcinoma of the lung KW - immunoblotting Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158291 VL - 12 IS - 9 ER - TY - JOUR A1 - Glaser, Kirsten A1 - Fehrholz, Markus A1 - Curstedt, Tore A1 - Kunzmann, Steffen A1 - Speer, Christian P. T1 - Effects of the New Generation Synthetic Reconstituted Surfactant CHF5633 on Pro- and Anti-Inflammatory Cytokine Expression in Native and LPS-Stimulated Adult CD14\(^{+}\) Monocytes JF - PLoS ONE N2 - Background Surfactant replacement therapy is the standard of care for the prevention and treatment of neonatal respiratory distress syndrome. New generation synthetic surfactants represent a promising alternative to animal-derived surfactants. CHF5633, a new generation reconstituted synthetic surfactant containing SP-B and SP-C analogs and two synthetic phospholipids has demonstrated biophysical effectiveness in vitro and in vivo. While several surfactant preparations have previously been ascribed immunomodulatory capacities, in vitro data on immunomodulation by CHF5633 are limited, so far. Our study aimed to investigate pro- and anti-inflammatory effects of CHF5633 on native and LPS-stimulated human adult monocytes. Methods Highly purified adult CD14\(^{+}\) cells, either native or simultaneously stimulated with LPS, were exposed to CHF5633, its components, or poractant alfa (Curosurf\(^{®}\)). Subsequent expression of TNF-α, IL-1β, IL-8 and IL-10 mRNA was quantified by real-time quantitative PCR, corresponding intracellular cytokine synthesis was analyzed by flow cytometry. Potential effects on TLR2 and TLR4 mRNA and protein expression were monitored by qPCR and flow cytometry. Results Neither CHF5633 nor any of its components induced inflammation or apoptosis in native adult CD14\(^{+}\) monocytes. Moreover, LPS-induced pro-inflammatory responses were not aggravated by simultaneous exposure of monocytes to CHF5633 or its components. In LPS-stimulated monocytes, exposure to CHF5633 led to a significant decrease in TNF-α mRNA (0.57 ± 0.23-fold, p = 0.043 at 4h; 0.56 ± 0.27-fold, p = 0.042 at 14h). Reduction of LPS-induced IL-1β mRNA expression was not significant (0.73 ± 0.16, p = 0.17 at 4h). LPS-induced IL-8 and IL-10 mRNA and protein expression were unaffected by CHF5633. For all cytokines, the observed CHF5633 effects paralleled a Curosurf®-induced modulation of cytokine response. TLR2 and TLR4 mRNA and protein expression were not affected by CHF5633 and Curosurf®, neither in native nor in LPS-stimulated adult monocytes. Conclusion The new generation reconstituted synthetic surfactant CHF5633 was tested for potential immunomodulation on native and LPS-activated adult human monocytes. Our data confirm that CHF5633 does not exert unintended pro-inflammatory effects in both settings. On the contrary, CHF5633 significantly suppressed TNF-α mRNA expression in LPS-stimulated adult monocytes, indicating potential anti-inflammatory effects. KW - adults KW - monocytes KW - surfactants KW - cytokines KW - protein expression KW - flow cytometry KW - messenger RNA KW - cloning Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180195 VL - 11 IS - 1 ER - TY - JOUR A1 - Kredel, Markus A1 - Kunzmann, Steffen A1 - Schlegel, Paul-Gerhardt A1 - Wölfl, Matthias A1 - Nordbeck, Peter A1 - Bühler, Christoph A1 - Lotz, Christopher A1 - Lepper, Philipp M. A1 - Wirbelauer, Johannes A1 - Roewer, Norbert A1 - Muellenbach, Ralf M. T1 - Double Peripheral Venous and Arterial Cannulation for Extracorporeal Membrane Oxygenation in Combined Septic and Cardiogenic Shock JF - American Journal of Case Reports N2 - Background: The use of venoarterial extracorporeal membrane oxygenation (va-ECMO) via peripheral cannulation for septic shock is limited by blood flow and increased afterload for the left ventricle. Case Report: A 15-year-old girl with acute myelogenous leukemia, suffering from severe septic and cardiogenic shock, was treated by venoarterial extracorporeal membrane oxygenation (va-ECMO). Sufficient extracorporeal blood flow matching the required oxygen demand could only be achieved by peripheral cannulation of both femoral arteries. Venous drainage was performed with a bicaval cannula inserted via the left V. femoralis. To accomplish left ventricular unloading, an additional drainage cannula was placed in the left atrium via percutaneous atrioseptostomy (va-va-ECMO). Cardiac function recovered and the girl was weaned from the ECMO on day 6. Successful allogenic stem cell transplantation took place 2 months later. Conclusions: In patients with vasoplegic septic shock and impaired cardiac contractility, double peripheral venoarterial extracorporeal membrane oxygenation (va-va-ECMO) with transseptal left atrial venting can by a lifesaving option. KW - extracorporeal membrane oxygenation KW - myeloid KW - leukemia KW - acute KW - shock KW - cardiogenic KW - septic Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158193 VL - 18 ER - TY - JOUR A1 - Fehrholz, Markus A1 - Glaser, Kirsten A1 - Speer, Christian P. A1 - Seidenspinner, Silvia A1 - Ottensmeier, Barbara A1 - Kunzmann, Steffen T1 - Caffeine modulates glucocorticoid-induced expression of CTGF in lung epithelial cells and fibroblasts JF - Respiratory Research N2 - Background: Although caffeine and glucocorticoids are frequently used to treat chronic lung disease in preterm neonates, potential interactions are largely unknown. While anti-inflammatory effects of glucocorticoids are well defined, their impact on airway remodeling is less characterized. Caffeine has been ascribed to positive effects on airway inflammation as well as remodeling. Connective tissue growth factor (CTGF, CCN2) plays a key role in airway remodeling and has been implicated in the pathogenesis of chronic lung diseases such as bronchopulmonary dysplasia (BPD) in preterm infants. The current study addressed the impact of glucocorticoids on the regulation of CTGF in the presence of caffeine using human lung epithelial and fibroblast cells. Methods: The human airway epithelial cell line H441 and the fetal lung fibroblast strain IMR-90 were exposed to different glucocorticoids (dexamethasone, budesonide, betamethasone, prednisolone, hydrocortisone) and caffeine. mRNA and protein expression of CTGF, TGF-β1-3, and TNF-α were determined by means of quantitative real-time PCR and immunoblotting. H441 cells were additionally treated with cAMP, the adenylyl cyclase activator forskolin, and the selective phosphodiesterase (PDE)-4 inhibitor cilomilast to mimic caffeine-mediated PDE inhibition. Results: Treatment with different glucocorticoids (1 μM) significantly increased CTGF mRNA levels in H441 (p < 0.0001) and IMR-90 cells (p < 0.01). Upon simultaneous exposure to caffeine (10 mM), both glucocorticoid-induced mRNA and protein expression were significantly reduced in IMR-90 cells (p < 0.0001). Of note, 24 h exposure to caffeine alone significantly suppressed basal expression of CTGF mRNA and protein in IMR-90 cells. Caffeine-induced reduction of CTGF mRNA expression seemed to be independent of cAMP levels, adenylyl cyclase activation, or PDE-4 inhibition. While dexamethasone or caffeine treatment did not affect TGF-β1 mRNA in H441 cells, increased expression of TGF-β2 and TGF-β3 mRNA was detected upon exposure to dexamethasone or dexamethasone and caffeine, respectively. Moreover, caffeine increased TNF-α mRNA in H441 cells (6.5 ± 2.2-fold, p < 0.05) which has been described as potent inhibitor of CTGF expression. Conclusions: In addition to well-known anti-inflammatory features, glucocorticoids may have adverse effects on long-term remodeling by TGF-β1-independent induction of CTGF in lung cells. Simultaneous treatment with caffeine may attenuate glucocorticoid-induced expression of CTGF, thereby promoting restoration of lung homeostasis. KW - airway remodeling KW - fibrosis KW - bronchopulmonary dysplasia KW - caffeine KW - CCN2 KW - CTGF KW - glucocorticoids KW - H441 KW - IMR-90 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157672 VL - 18 IS - 51 ER - TY - JOUR A1 - Fehrholz, Markus A1 - Christian P., Speer A1 - Kunzmann, Steffen T1 - Caffeine and Rolipram Affect Smad Signalling and TGFβ1 Stimulated CTGF and Transgelin Expression in Lung Epithelial Cells JF - PLoS One N2 - Caffeine administration is an important part of the therapeutic treatment of bronchopulmonary dysplasia (BPD) in preterm infants. However, caffeine mediated effects on airway remodelling are still undefined. The TGF-β/Smad signalling pathway is one of the key pathways involved in airway remodelling. Connective tissue growth factor (CTGF), a downstream mediator of TGF-β, and transgelin, a binding and stabilising protein of the cytoskeleton, are both regulated by TGF-b1 and play an important role in airway remodelling. Both have also been implicated in the pathogenesis of BPD. The aim of the present study was to clarify whether caffeine, an unspecific phosphodiesterase (PDE) inhibitor, and rolipram, a prototypical PDE-4 selective inhibitor, were both able to affect TGF-β1-induced Smad signalling and CTGF/transgelin expression in lung epithelial cells. Furthermore, the effect of transgelin knock-down on Smad signalling was studied. The pharmacological effect of caffeine and rolipram on Smad signalling was investigated by means of a luciferase assay via transfection of a TGFβ1- inducible reporter plasmid in A549 cells. The regulation of CTGF and transgelin expression by caffeine and rolipram were studied by promoter analysis, real-time PCR and Western blot. Endogenous transgelin expression was down-regulated by lentiviral transduction mediating transgelin-specific shRNA expression. The addition of caffeine and rolipram inhibited TGFβ1 induced reporter gene activity in a concentration-related manner. They also antagonized the TGF-b1 induced upregulation of CTGF and transgelin on the promoter-, the mRNA-, and the protein-level. Functional analysis showed that transgelin silencing reduced TGF-β1 induced Smad-signalling and CTGF induction in lung epithelial cells. The present study highlights possible new molecular mechanisms of caffeine and rolipram including an inhibition of Smad signalling and of TGF-β1 regulated genes involved in airway remodelling. An understanding of these mechanisms might help to explain the protective effects of caffeine in prevention of BPD and suggests rolipram to be a potent replacement for caffeine. KW - caffein KW - SMAD signaling KW - epithelial cells KW - luciferase KW - DNA-binding proteins KW - immunoblotting KW - phosphorylation KW - cytoskeleton Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118406 VL - 9 IS - 5 ER - TY - JOUR A1 - Kunzmann, Steffen A1 - Hütten, Matthias A1 - Ottensmeier, Barbara A1 - Kramer, Boris W. A1 - Fehrholz, Markus T1 - A20 is increased in fetal lung in a sheep LPS model of chorioamnionitis JF - Oxidative Medicine and Cellular Longevity N2 - Chorioamnionitis is associated with an increased risk of preterm birth and aggravates adverse outcomes such as BPD. Development of BPD is associated with chronic inflammatory reactions and oxidative stress in the airways which may be antenatally initiated by chorioamnionitis. A20 is an immunomodulatory protein involved in the negative feedback regulation of inflammatory reactions and is a possible regulator protein in oxidative stress reactions. The influence of chorioamnionitis on A20 gene regulation in the fetal lung is unknown. We characterized the influence of LPS and proinflammatory cytokines on A20 expression in human lung endothelial (HPMEC-ST1.6R) and epithelial (A549) cells in vitro by real-time PCR and/or western blotting and used a sheep model of LPS-induced chorioamnionitis for in vivo studies. To study the functional role of A20, endogenous A20 was overexpressed in HPMEC-ST1.6R and A549 cells. LPS induced proinflammatory cytokines in HPMEC-ST1.6R and A549 cells. Both LPS and/or proinflammatory cytokines elevated A20 at transcriptional and translational levels. Intra-amniotic LPS transiently increased IL-1β, IL-6, IL-8, and TNF-α mRNA levels in fetal lamb lungs, associated with an increase in A20 mRNA and protein levels. Overexpression of A20 reduced proinflammatory cytokines in vitro. Repeated LPS exposure induced LPS tolerance for proinflammatory cytokines and A20 in vitro and in vivo. Antenatal inflammation induced a transient increase in proinflammatory cytokines in the preterm fetal lung. The expression of proinflammatory cytokines increased expression of A20. Elevated A20 may have a protective role by downregulating chorioamnionitis-triggered fetal lung inflammation. A20 may be a novel target for pharmacological interventions to prevent chorioamnionitis-induced airway inflammation and lung damage, which can result in BPD later in life. KW - Chorioamnionitis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265869 VL - 2022 ER -