TY - JOUR A1 - Ronchi, Cristina L. A1 - Leich, Ellen A1 - Sbiera, Silviu A1 - Weismann, Dirk A1 - Rosenwald, Andreas A1 - Allolio, Bruno A1 - Fassnacht, Martin T1 - Single Nucleotide Polymorphism Microarray Analysis in Cortisol-Secreting Adrenocortical Adenomas Identifies New Candidate Genes and Pathways JF - Neoplasia N2 - The genetic mechanisms underlying adrenocortical tumor development are still largely unknown. We used high-resolution single nucleotide polymorphism microarrays (Affymetrix SNP 6.0) to detect copy number alterations (CNAs) and copy-neutral losses of heterozygosity (cnLOH) in 15 cortisol-secreting adrenocortical adenomas with matched blood samples. We focused on microalterations aiming to discover new candidate genes involved in early tumorigenesis and/or autonomous cortisol secretion. We identified 962 CNAs with a median of 18 CNAs per sample. Half of them involved noncoding regions, 89% were less than 100 kb, and 28% were found in at least two samples. The most frequently gained regions were 5p15.33, 6q16.1, 7p22.3-22.2, 8q24.3, 9q34.2-34.3, 11p15.5, 11q11, 12q12, 16q24.3, 20p11.1-20q21.11, and Xq28 (>= 20% of cases), most of them being identified in the same three adenomas. These regions contained among others genes like NOTCH1, CYP11B2, HRAS, and IGF2. Recurrent losses were less common and smaller than gains, being mostly localized at 1p, 6q, and 11q. Pathway analysis revealed that Notch signaling was the most frequently altered. We identified 46 recurrent CNAs that each affected a single gene (31 gains and 15 losses), including genes involved in steroidogenesis (CYP11B1) or tumorigenesis (CTNNB1, EPHA7, SGK1, STIL, FHIT). Finally, 20 small cnLOH in four cases affecting 15 known genes were found. Our findings provide the first high-resolution genome-wide view of chromosomal changes in cortisol-secreting adenomas and identify novel candidate genes, such as HRAS, EPHA7, and SGK1. Furthermore, they implicate that the Notch1 signaling pathway might be involved in the molecular pathogenesis of adrenocortical tumors. KW - kinase KW - comparative genomic hybridization KW - high-resolution analysis KW - Cushings syndrome KW - neutral loss KW - tumors KW - serum KW - expression KW - carcinoma KW - catenin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134953 VL - 14 IS - 3 ER - TY - JOUR A1 - Sbiera, Silviu A1 - Ronchi, Cristina L. A1 - Leich, Ellen A1 - Henzel, Katharina A1 - Rosenwald, Andreas A1 - Allolio, Bruno A1 - Fassnacht, Martin T1 - Single Nucleotide Polymorphism Array Profiling of Adrenocortical Tumors - Evidence for an Adenoma Carcinoma Sequence? JF - PLoS ONE N2 - Adrenocortical tumors consist of benign adenomas and highly malignant carcinomas with a still incompletely understood pathogenesis. A total of 46 adrenocortical tumors (24 adenomas and 22 carcinomas) were investigated aiming to identify novel genes involved in adrenocortical tumorigenesis. High-resolution single nucleotide polymorphism arrays (Affymetrix) were used to detect copy number alterations (CNAs) and copy neutral losses of heterozygosity (cnLOH). Genomic clustering showed good separation between adenomas and carcinomas, with best partition including only chromosome 5, which was highly amplified in 17/22 malignant tumors. The malignant tumors had more relevant genomic aberrations than benign tumors, such as a higher median number of recurrent CNA (2631 vs 94), CNAs >100 Kb (62.5 vs 7) and CN losses (72.5 vs 5.5), and a higher percentage of samples with cnLOH (91% vs 29%). Within the carcinoma cohort, a precise genetic pattern (i.e. large gains at chr 5, 7, 12, and 19, and losses at chr 1, 2, 13, 17, and 22) was associated with a better prognosis (overall survival: 72.2 vs 35.4 months, P=0.063). Interestingly, >70% of gains frequent in beningn were also present in malignant tumors. Notch signaling was the most frequently involved pathway in both tumor entities. Finally, a CN gain at imprinted “IGF2” locus chr 11p15.5 appeared to be an early alteration in a multi-step tumor progression, followed by the loss of one or two alleles, associated with increased IGF2 expression, only in carcinomas. Our study serves as database for the identification of genes and pathways, such as Notch signaling, which could be involved in the pathogenesis of adrenocortical tumors. Using these data, we postulate an adenoma-carcinoma sequence for these tumors. KW - adenomas KW - cancer diagnosis KW - cancer detection KW - carcinogenesis KW - carcinomas KW - chromosomes KW - genetic loci KW - malignant tumors KW - notch signaling Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97218 ER - TY - JOUR A1 - Keppler, Sarah A1 - Weißbach, Susann A1 - Langer, Christian A1 - Knop, Stefan A1 - Pischimarov, Jordan A1 - Kull, Miriam A1 - Stühmer, Thorsten A1 - Steinbrunn, Torsten A1 - Bargou, Ralf A1 - Einsele, Hermann A1 - Rosenwald, Andreas A1 - Leich, Ellen T1 - Rare SNPs in receptor tyrosine kinases are negative outcome predictors in multiple myeloma JF - Oncotarget N2 - Multiple myeloma (MM) is a plasma cell disorder that is characterized by a great genetic heterogeneity. Recent next generation sequencing studies revealed an accumulation of tumor-associated mutations in receptor tyrosine kinases (RTKs) which may also contribute to the activation of survival pathways in MM. To investigate the clinical role of RTK-mutations in MM, we deep-sequenced the coding DNA-sequence of EGFR, EPHA2, ERBB3, IGF1R, NTRK1 and NTRK2 which were previously found to be mutated in MM, in 75 uniformly treated MM patients of the “Deutsche Studiengruppe Multiples Myelom”. Subsequently, we correlated the detected mutations with common cytogenetic alterations and clinical parameters. We identified 11 novel non-synonymous SNVs or rare patient-specific SNPs, not listed in the SNP databases 1000 genomes and dbSNP, in 10 primary MM cases. The mutations predominantly affected the tyrosine-kinase and ligand-binding domains and no correlation with cytogenetic parameters was found. Interestingly, however, patients with RTK-mutations, specifically those with rare patient-specific SNPs, showed a significantly lower overall, event-free and progression-free survival. This indicates that RTK SNVs and rare patient-specific RTK SNPs are of prognostic relevance and suggests that MM patients with RTK-mutations could potentially profit from treatment with RTK-inhibitors. KW - multiple myeloma KW - rare SNP KW - amplicon sequencing KW - receptor tyrosine kinases Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177840 VL - 7 IS - 25 ER - TY - JOUR A1 - Benkert, Thomas F. A1 - Dietz, Lena A1 - Hartmann, Elena M. A1 - Leich, Ellen A1 - Rosenwald, Andreas A1 - Serfling, Edgar A1 - Buttmann, Mathias A1 - Berberich-Siebelt, Friederike T1 - Natalizumab Exerts Direct Signaling Capacity and Supports a Pro-Inflammatory Phenotype in Some Patients with Multiple Sclerosis N2 - Natalizumab is a recombinant monoclonal antibody raised against integrin alpha-4 (CD49d). It is approved for the treatment of patients with multiple sclerosis (MS), a chronic inflammatory autoimmune disease of the CNS. While having shown high therapeutic efficacy, treatment by natalizumab has been linked to progressive multifocal leukoencephalopathy (PML) as a serious adverse effect. Furthermore, drug cessation sometimes induces rebound disease activity of unknown etiology. Here we investigated whether binding of this adhesion-blocking antibody to T lymphocytes could modulate their phenotype by direct induction of intracellular signaling events. Primary CD4+ T lymphocytes either from healthy donors and treated with natalizumab in vitro or from MS patients receiving their very first dose of natalizumab were analyzed. Natalizumab induced a mild upregulation of IL-2, IFN-c and IL-17 expression in activated primary human CD4+ T cells propagated ex vivo from healthy donors, consistent with a pro-inflammatory costimulatory effect on lymphokine expression. Along with this, natalizumab binding triggered rapid MAPK/ERK phosphorylation. Furthermore, it decreased CD49d surface expression on effector cells within a few hours. Sustained CD49d downregulation could be attributed to integrin internalization and degradation. Importantly, also CD4+ T cells from some MS patients receiving their very first dose of natalizumab produced more IL-2, IFN-c and IL-17 already 24 h after infusion. Together these data indicate that in addition to its adhesion-blocking mode of action natalizumab possesses mild direct signaling capacities, which can support a pro-inflammatory phenotype of peripheral blood T lymphocytes. This might explain why a rebound of disease activity or IRIS is observed in some MS patients after natalizumab cessation. KW - Medizin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77905 ER - TY - JOUR A1 - Rudelius, Martina A1 - Rosenfeldt, Mathias Tillmann A1 - Leich, Ellen A1 - Rauert-Wunderlich, Hilka A1 - Solimando, Antonio Giovanni A1 - Ott, German A1 - Rosenwald, Andreas A1 - Beilhack, Andreas T1 - Inhibition of focal adhesion kinase overcomes resistance of mantle cell lymphoma to ibrutinib in the bone marrow microenvironment JF - Haematologica N2 - Mantle cell lymphoma and other lymphoma subtypes often spread to the bone marrow, and stromal interactions mediated by focal adhesion kinase frequently enhance survival and drug resistance of the lymphoma cells. To study the role of focal adhesion kinase in mantle cell lymphoma, immunohistochemistry of primary cases and functional analysis of mantle cell lymphoma cell lines and primary mantle cell lymphoma cells co-cultured with bone marrow stromal cells (BMSC) using small molecule inhibitors and RNAi-based focal adhesion kinase silencing was performed. We showed that focal adhesion kinase is highly expressed in bone marrow infiltrates of mantle cell lymphoma and in mantle cell lymphoma cell lines. Stroma-mediated activation of focal adhesion kinase led to activation of multiple kinases (AKT, p42/44 and NF-kappa B), that are important for prosurvival and proliferation signaling. Interestingly, RNAi-based focal adhesion kinase silencing or inhibition with small molecule inhibitors (FAKi) resulted in blockage of targeted cell invasion and induced apoptosis by inactivation of multiple signaling cascades, including the classic and alternative NF-kappa B pathway. In addition, the combined treatment of ibrutinib and FAKi was highly synergistic, and ibrutinib resistance of mantle cell lymphoma could be overcome. These data demonstrate that focal adhesion kinase is important for stroma-mediated survival and drug resistance in mantle cell lymphoma, providing indications for a targeted therapeutic strategy. KW - NF-Kappa-B KW - Stromal cells KW - Induced apoptosis KW - Fak regulation KW - Phase- KW - Multiple KW - Activation KW - Mechanisms KW - Migration KW - Pathogenesis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227117 VL - 103 IS - 1 ER - TY - JOUR A1 - Effenberger, Madlen A1 - Bommert, Kathryn S. A1 - Kunz, Viktoria A1 - Kruk, Jessica A1 - Leich, Ellen A1 - Rudelius, Martina A1 - Bargou, Ralf A1 - Bommert, Kurt T1 - Glutaminase inhibition in multiple myeloma induces apoptosis via MYC degradation JF - Oncotarget N2 - Multiple Myeloma (MM) is an incurable hematological malignancy affecting millions of people worldwide. As in all tumor cells both glucose and more recently glutamine have been identified as important for MM cellular metabolism, however there is some dispute as to the role of glutamine in MM cell survival. Here we show that the small molecule inhibitor compound 968 effectively inhibits glutaminase and that this inhibition induces apoptosis in both human multiple myeloma cell lines (HMCLs) and primary patient material. The HMCL U266 which does not express MYC was insensitive to both glutamine removal and compound 968, but ectopic expression of MYC imparted sensitivity. Finally, we show that glutamine depletion is reflected by rapid loss of MYC protein which is independent of MYC transcription and post translational modifications. However, MYC loss is dependent on proteasomal activity, and this loss was paralleled by an equally rapid induction of apoptosis. These findings are in contrast to those of glucose depletion which largely affected rates of proliferation in HMCLs, but had no effects on either MYC expression or viability. Therefore, inhibition of glutaminolysis is effective at inducing apoptosis and thus serves as a possible therapeutic target in MM. KW - Multiple Myeloma KW - glutaminase inhibition KW - apoptosis KW - MYC Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170168 VL - 8 IS - 49 ER - TY - JOUR A1 - Weißbach, Susann A1 - Heredia-Guerrero, Sofia Catalina A1 - Barnsteiner, Stefanie A1 - Großhans, Lukas A1 - Bodem, Jochen A1 - Starz, Hanna A1 - Langer, Christian A1 - Appenzeller, Silke A1 - Knop, Stefan A1 - Steinbrunn, Torsten A1 - Rost, Simone A1 - Einsele, Hermann A1 - Bargou, Ralf Christian A1 - Rosenwald, Andreas A1 - Stühmer, Thorsten A1 - Leich, Ellen T1 - Exon-4 Mutations in KRAS Affect MEK/ERK and PI3K/AKT Signaling in Human Multiple Myeloma Cell Lines JF - Cancers N2 - Approximately 20% of multiple myeloma (MM) cases harbor a point mutation in KRAS. However, there is still no final consent on whether KRAS-mutations are associated with disease outcome. Specifically, no data exist on whether KRAS-mutations have an impact on survival of MM patients at diagnosis in the era of novel agents. Direct blockade of KRAS for therapeutic purposes is mostly impossible, but recently a mutation-specific covalent inhibitor targeting KRAS\(^{p.G12C}\) entered into clinical trials. However, other KRAS hotspot-mutations exist in MM patients, including the less common exon-4 mutations. For the current study, the coding regions of KRAS were deep-sequenced in 80 newly diagnosed MM patients, uniformely treated with three cycles of bortezomib plus dexamethasone and cyclophosphamide (VCD)-induction, followed by high-dose chemotherapy and autologous stem cell transplantation. Moreover, the functional impact of KRAS\(^{p.G12A}\) and the exon-4 mutations p.A146T and p.A146V on different survival pathways was investigated. Specifically, KRAS\(^{WT}\), KRAS\(^{p.G12A}\), KRAS\(^{p.A146T}\), and KRAS\(^{p.A146V}\) were overexpressed in HEK293 cells and the KRAS\(^{WT}\) MM cell lines JJN3 and OPM2 using lentiviral transduction and the Sleeping Beauty vector system. Even though KRAS-mutations were not correlated with survival, all KRAS-mutants were found capable of potentially activating MEK/ERK- and sustaining PI3K/AKT-signaling in MM cells. KW - multiple myeloma KW - KRAS KW - MEK/ERK-signaling KW - AKT-signaling KW - amplicon sequencing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200617 SN - 2072-6694 VL - 12 IS - 2 ER - TY - JOUR A1 - Schlereth, Katharina A1 - Heyl, Charlotte A1 - Krampitz, Anna-Maria A1 - Mernberger, Marco A1 - Finkernagel, Florian A1 - Scharfe, Maren A1 - Jarek, Michael A1 - Leich, Ellen A1 - Rosenwald, Andreas A1 - Stiewe, Thorsten T1 - Characterization of the p53 Cistrome - DNA Binding Cooperativity Dissects p53's Tumor Suppressor Functions JF - PLOS Genetics N2 - p53 protects us from cancer by transcriptionally regulating tumor suppressive programs designed to either prevent the development or clonal expansion of malignant cells. How p53 selects target genes in the genome in a context-and tissue-specific manner remains largely obscure. There is growing evidence that the ability of p53 to bind DNA in a cooperative manner prominently influences target gene selection with activation of the apoptosis program being completely dependent on DNA binding cooperativity. Here, we used ChIP-seq to comprehensively profile the cistrome of p53 mutants with reduced or increased cooperativity. The analysis highlighted a particular relevance of cooperativity for extending the p53 cistrome to non-canonical binding sequences characterized by deletions, spacer insertions and base mismatches. Furthermore, it revealed a striking functional separation of the cistrome on the basis of cooperativity; with low cooperativity genes being significantly enriched for cell cycle and high cooperativity genes for apoptotic functions. Importantly, expression of high but not low cooperativity genes was correlated with superior survival in breast cancer patients. Interestingly, in contrast to most p53-activated genes, p53-repressed genes did not commonly contain p53 binding elements. Nevertheless, both the degree of gene activation and repression were cooperativity-dependent, suggesting that p53-mediated gene repression is largely indirect and mediated by cooperativity-dependently transactivated gene products such as CDKN1A, E2F7 and non-coding RNAs. Since both activation of apoptosis genes with non-canonical response elements and repression of pro-survival genes are crucial for p53's apoptotic activity, the cistrome analysis comprehensively explains why p53-induced apoptosis, but not cell cycle arrest, strongly depends on the intermolecular cooperation of p53 molecules as a possible safeguard mechanism protecting from accidental cell killing. KW - cell-cycle arrest KW - gene expression KW - breast cancer KW - human genome KW - transcriptional repression KW - consensus DNA KW - in-vivo KW - apoptosis KW - network KW - damage Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127579 SN - 1553-7404 VL - 9 IS - 8 ER - TY - THES A1 - Leich, Ellen T1 - Characterization of Follicular Lymphoma Lacking the Hallmark Translocation t(14;18) T1 - Charakterisierung von t(14;18)-negativen Follikulären Lymphomen N2 - Neoplasien des hämatopoetischen und lymphoiden Systems können in Hodkin Lymphome und in Non-Hodgkin Lymphome (NHL) unterteilt werden. Etwa 80% der NHL sind B-Zell Lymphome (B-NHL), während etwa 20% T-Zell und NK-Zell Lymphome (T-NHL) umfassen. Genetische Alterationen, insbesondere Translokationen, welche die Immunglobulin (Ig) Rezeptor Gene betreffen, sind für die Klassifikation von B-NHL von großem Nutzen und sind auch in der Pathogenese dieser Neoplasien von erheblicher Bedeutung. Ein Beispiel hierfür ist die Translokation t(14;18)(q32.33;q21.3) in follikulären Lymphomen (FL). Analog zu den Ig Rezeptor Genen in B-NHL, sind die T-Zell Rezeptor (TCR) Gene von etwa 30% der Vorläufer T-Zell Neoplasien von einer Translokation oder Inversion betroffen, die in der Regel mit der Überexpression eines Onkogens einhergehen. Die Pathogenese von reifen T-NHL, sowie deren zugrunde liegenden molekularen Mechanismen sind jedoch weitestgehend unbekannt. Um das Vorkommen und die Häufigkeit von chromosomalen Bruchpunkten im Bereich der TCR Gene in reifen T-NHL detailliert zu charakterisieren, wurden 227 Fälle im Tissue Microarray Format mit spezifischen Fluoreszenz in situ Hybridisierungs (FISH)-Assays analysiert. Translokationen oder Inversionen konnten in lediglich zwei der untersuchten Fälle nachgewiesen werden, was darauf hindeutet, dass reife T-NHL nur selten von Bruchpunkten in ihren TCR Loci betroffen sind. FL sind die zweithäufigste B-Zell Neoplasie, die durch ein vorwiegend follikuläres, follikulär und diffuses, oder durch ein vorwiegend diffuses Wachstum geprägt sein kann. Die Translokation t(14;18), die in etwa 90% der Fälle auftritt, ist mit einer deregulierten Expression des BCL2 Proto-Onkogens assoziiert. Während bereits eine Vielzahl von Studien die morphologischen, klinischen und molekularen Aspekte dieser Entität definieren konnte, fehlt eine detaillierte Charakterisierung t(14;18)-negativer FL bislang vollständig. In der vorliegenden Arbeit wurden mittels Polymerase Kettenreaktion und FISH Analyse 184 FL in t(14;18)-positive und t(14;18)-negative Fälle unterteilt, und die Genexpressionsprofile sowie die nummerischen chromosomalen Aberationen dieser Subgruppen untersucht. Die einzige genetische Alteration, die sich im Vergleich von t(14;18)-negativen und t(14;18)-positiven FL als signifikant erwies, waren Zugewinne und Amplifikationen in 18q11-q21, die in 32% der t(14;18)-positiven und in 0% der t(14;18)-negativen FL auftraten. Mit Hilfe von Genexpressionsanalysen und einer Gene Set Enrichment-Analyse (GSEA) konnte eine signifikante Assoziation von Keimzentrums B-Zell (GCB) Signaturen mit t(14;18)-positiven FL nachgewiesen werden, während in den t(14;18)-negativen FL eine signifikante Anreicherung von aktivierten B-Zell (ABC)-, NFkB-, Proliferations-, Zell Zyklus-, Interferon- und „Bystander“ Zell Signaturen beobachtet wurde. In einem immunhistochemischen Validierungsansatz mit einer unabhängigen FL Studiengruppe konnte gezeigt werden, dass der Keimzentrums Marker CD10/MME in t(14;18)-positiven FL häufiger exprimiert wird als in t(14;18)-negativen FL, während häufig eine erhöhte Expression des Post-Keimzentrums Markers IRF4/MUM1, des Proliferations Markers Ki67 und des zytotoxischen T-Zell Markers GZMB in t(14;18)-negativen FL nachweisbar war. Diese Ergebnisse weisen auf einen Post-Keimzentrums Phänotyp in t(14;18)-negativen FL hin. Das Vorkommen von „ongoing“ somatischen Hypermutationen in den schweren Ketten der Ig Gene dieser Fälle spricht jedoch gegen diese Hypothese und deutet darauf hin, dass der Phänotyp der t(14;18)-negativen FL eher dem einer B-Zelle im späten Keimzentrumsstadium entspricht. In einer unabhängigen Studie mit 35 vorwiegend diffus wachsenden FL konnte mittels immunhistochemischer Färbungen, klassischer Chromosomenbänderung, FISH und Genexpressionsanalysen eine Untergruppe von t(14;18)-negativen FL definiert werden, die sich durch eine chromosomale Deletion in 1p36 und durch spezifische morphologische und klinische Eigenschaften auszeichnete. Das Genexpressionsprofil der diffusen FL fügte sich in das Spektrum der klassischen FL ein. Mittels GSEA konnte jedoch eine signifikante Anreicherung von T-Zell-, NK-Zell- und zwei dendritischen Zell Signaturen in diesen Fällen beobachtet werden, während die Kontrollgruppe mit klassischen FL signifikant mit GCB-, Proliferations-, Zell Zyklus- und B-Zell Signaturen assoziiert war. Die diffusen FL zeichneten sich häufig durch ein frühes klinisches Stadium, sowie durch große inguinale Tumoren aus. Zusammenfassend deuten die vorliegenden Ergebnisse darauf hin, dass t(14;18)-negative FL dem Spektrum „klassischer“ FL angehören, aber dennoch spezifische molekulare und klinische Eigenschaften aufweisen. Insbesondere scheinen´t(14;18)-negative diffuse FL, die durch eine Deletion in 1p36, ein frühes klinisches Stadium und große in der Leiste lokalisierte Tumoren charakterisiert sind, eine eigene FL Subgruppe zu repräsentieren. N2 - Tumors of the hematopoietic and lymphoid system are classified into Hodgkin lymphoma and non-Hodgkin lymphoma (NHL). Approximately 80% of non-Hodgkin lymphomas (NHL) are B-cell lymphomas (B-NHL) and the remainder include T-cell and NK-cell lymphomas as well as immunodeficiency-associated lymphoproliferative disorders. The presence of genetic alterations such as translocations involving the immunoglobulin (Ig) receptor loci in B-NHL, e.g. the translocation t(14;18)(q32.33;q21.3) in follicular lymphoma (FL), are of great value for the classification and of importance in the pathogenesis of these neoplasms. In analogy to the Ig receptor genes in B-NHL, the T-cell receptor (TCR) gene loci are targeted by chromosomal breaks in approximately 30% of precursor T-cell lymphoblastic leukemias/lymphomas involving various translocation or inversion partners. Most of these events result in the overexpression of an oncogene by juxtaposing it to the regulatory sequences of the TCR genes. However, the pathogenesis of mature T-cell NHL (T-NHL) and the underlying molecular mechanisms are only poorly understood so far. To determine the exact frequency of breakpoints occurring in the TCR loci of 227 mature T-NHL cases, we designed fluorescence in situ hybridization (FISH) assays for the TCR loci that are applicable for large scale analysis of formalin fixed and paraffin embedded (FFPE) lymphoma specimens in a tissue microarray format. This approach revealed only two mature T-NHL cases with a chromosomal breakpoint in one of the TCR loci making the rearrangement of TCR loci a very rare event in these neoplasms that occurs in less than 1% of cases.FL is the second most frequent type of B-NHL that can show predominantly follicular, combined follicular and diffuse, or predominantly diffuse growth patterns. The characteristic genetic hallmark of FL is the translocation t(14;18)that occurs in approximately 90% of cases and leads to a deregulated expression of the anti-apoptotic BCL2 proto-oncogene. FL has yet been a subject of many studies deciphering morphological, clinical and molecular features of this entity. However, only little information exists about cases lacking this translocation. In this thesis we divided 184 FL cases by polymerase chain reaction (PCR) and by FISH assays into FL cases with and without t(14;18) and investigated their respective gene expression profiles and copy number alterations. For FISH analysis we followed the refined conditions established for the T-NHL study. The only genetic alterations that differed significantly by comparative genomic hybridization (CGH) analysis between FL cases with and without t(14;18) were frequent gains or amplifications in 18q11-q21 in 32% of t(14;18)-positive and 0% of t(14;18)-negative cases. Gene expression profiling and geneset enrichment analysis (GSEA) revealed an enrichment of germinal center B-cell (GCB) signatures in t(14;18)-positive cases whereas an enrichment of activated B-cell (ABC) like, NFkB-, proliferation-, cell cycle-, interferon and bystander cell signatures were observed in t(14;18)-negative cases. A validation approach by immunohistochemistry (IHC) on an independent test set of FL cases (n=84) revealed a more frequent expression of the germinal center (GC) marker CD10/MME in cases with t(14;18) and a higher expression of the post GC marker IRF4/MUM1, the proliferation marker Ki67 and the cytotoxic T-cell marker GZMB in cases without t(14;18). Although these results may suggest a post-GCB phenotype for translocation t(14;18)-negative cases, ongoing somatic hypermutations of the immunoglobulin heavy chain genes in these cases rather point to a late GC stage of B-cell differentiation in FL without t(14;18). In an independent study with 35 predominantly diffuse FL cases, it was furthermore possible to define another subset of t(14;18)-negative FL characterized by a chromosomal deletion (del) in 1p36 and distinct morphological and clinical features by IHC, classical chromosome banding, FISH and gene expression profiling. The gene expression profiles of predominantly diffuse FL cases fell into the spectrum of FL. However, by GSEA they showed a significant enrichment of T-cell, NK-cell- and two dendritic-cell subset signatures, whereas a significant enrichment of GCB cell-, proliferation-, cell cycle- and B-cell signatures was observed in a control group of “classic” FL cases. Remarkably, patients with diffuse FL frequently presented with low clinical stage and large, but localized inguinal tumors. In conclusion, our results suggest that t(14;18)-negative FL are part of the spectrum of FL in general, but nevertheless show distinct molecular and clinical features. In particular, predominantly diffuse FL with (del)1p36, low clinical stage and large but localized inguinal tumors may represent a distinct t(14;18)-negative FL subtype. KW - Keimzentrum KW - Non Hodgkin Lymphome KW - BCL2 KW - Immunrezeptoren KW - Non Hodgkin Lymphoma KW - BCL2 KW - Immunoreceptors Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-38998 ER - TY - JOUR A1 - Seiler, Jonas A1 - Ebert, Regina A1 - Rudert, Maximilian A1 - Herrmann, Marietta A1 - Leich, Ellen A1 - Weißenberger, Manuela A1 - Horas, Konstantin T1 - Bone metastases of diverse primary origin frequently express the VDR (vitamin D receptor) and CYP24A1 JF - Journal of Clinical Medicine N2 - Active vitamin D (1,25(OH)2D3) is known to exert direct anti-cancer actions on various malignant tissues through binding to the vitamin D receptor (VDR). These effects have been demonstrated in breast, prostate, renal and thyroid cancers, which all have a high propensity to metastasise to bone. In addition, there is evidence that vitamin D catabolism via 24-hydroxylase (CYP24A1) is altered in tumour cells, thus, reducing local active vitamin D levels in cancer cells. The aim of this study was to assess VDR and CYP24A1 expression in various types of bone metastases by using immunohistochemistry. Overall, a high total VDR protein expression was detected in 59% of cases (39/66). There was a non-significant trend of high-grade tumours towards the low nuclear VDR expression (p = 0.07). Notably, patients with further distant metastases had a reduced nuclear VDR expression (p = 0.03). Furthermore, a high CYP24A1 expression was detected in 59% (39/66) of bone metastases. There was a significant positive correlation between nuclear VDR and CYP24A1 expression (p = 0.001). Collectively, the VDR and CYP24A1 were widely expressed in a multitude of bone metastases, pointing to a potential role of vitamin D signalling in cancer progression. This is of high clinical relevance, as vitamin D deficiency is frequent in patients with bone metastases. KW - vitamin D receptor KW - VDR KW - CYP24A1 KW - bone metastasis KW - vitamin D Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297377 SN - 2077-0383 VL - 11 IS - 21 ER -