TY - JOUR A1 - Ramler, Jacqueline A1 - Krummenacher, Ivo A1 - Lichtenberg, Crispin T1 - Well‐Defined, Molecular Bismuth Compounds: Catalysts in Photochemically Induced Radical Dehydrocoupling Reactions JF - Chemistry – A European Journal N2 - A series of diorgano(bismuth)chalcogenides, [Bi(di‐aryl)EPh], has been synthesised and fully characterised (E=S, Se, Te). These molecular bismuth complexes have been exploited in homogeneous photochemically‐induced radical catalysis, using the coupling of silanes with TEMPO as a model reaction (TEMPO=(tetramethyl‐piperidin‐1‐yl)‐oxyl). Their catalytic properties are complementary or superior to those of known catalysts for these coupling reactions. Catalytically competent intermediates of the reaction have been identified. Applied analytical techniques include NMR, UV/Vis, and EPR spectroscopy, mass spectrometry, single‐crystal X‐ray diffraction analysis, and (TD)‐DFT calculations. KW - bismuth KW - chalcogens KW - dehydrocoupling KW - photocatalysis KW - radical reactions Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224577 VL - 26 IS - 64 SP - 14551 EP - 14555 ER - TY - JOUR A1 - Ramler, Jacqueline A1 - Schwarzmann, Johannes A1 - Stoy, Andreas A1 - Lichtenberg, Crispin T1 - Two Faces of the Bi−O Bond: Photochemically and Thermally Induced Dehydrocoupling for Si−O Bond Formation JF - European Journal of Inorganic Chemistry N2 - The diorgano(bismuth)alcoholate [Bi((C\(_{6}\)H\(_{4}\)CH\(_{2}\))\(_{2}\)S)OPh] (1-OPh) has been synthesized and fully characterized. Stoichiometric reactions, UV/Vis spectroscopy, and (TD-)DFT calculations suggest its susceptibility to homolytic and heterolytic Bi−O bond cleavage under given reaction conditions. Using the dehydrocoupling of silanes with either TEMPO or phenol as model reactions, the catalytic competency of 1-OPh has been investigated (TEMPO=(tetramethyl-piperidin-1-yl)-oxyl). Different reaction pathways can deliberately be addressed by applying photochemical or thermal reaction conditions and by choosing radical or closed-shell substrates (TEMPO vs. phenol). Applied analytical techniques include NMR, UV/Vis, and EPR spectroscopy, mass spectrometry, single-crystal X-ray diffraction analysis, and (TD)-DFT calculations. KW - Bismuth KW - dehydrocoupling KW - radical reactions KW - chalcogens KW - catalysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257428 VL - 2022 IS - 7 ER - TY - JOUR A1 - Ramler, Jaqueline A1 - Fantuzzi, Felipe A1 - Geist, Felix A1 - Hanft, Anna A1 - Braunschweig, Holger A1 - Engels, Bernd A1 - Lichtenberg, Crispin T1 - The dimethylbismuth cation: entry into dative Bi-Bi bonding and unconventional methyl exchange JF - Angewandte Chemie International Edition N2 - The dimethyl bismuth cation, [BiMe\(_2\)(SbF\(_6\))], has been isolated and characterized. Reaction with BiMe\(_3\) allows access to the first compound featuring Bi→Bi donor–acceptor bonding. In solution, dynamic behavior with methyl exchange via an unusual S\(_E\)2 mechanism is observed, underlining the unique properties of bismuth species as soft Lewis acids with the ability to undergo reversible Bi−C bond cleavage. KW - inorganic chemistry KW - methyl exchange KW - bismuth KW - cationic species KW - electrophilic substitution KW - Lewis acidity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256543 VL - 60 ER - TY - JOUR A1 - Ramler, Jacqueline A1 - Lichtenberg, Crispin T1 - Molecular Bismuth Cations: Assessment of Soft Lewis Acidity JF - Chemistry – A European Journal N2 - Three‐coordinate cationic bismuth compounds [Bi(diaryl)(EPMe\(_{3}\))][SbF\(_{6}\)] have been isolated and fully characterized (diaryl=[(C\(_{6}\)H\(_{4}\))\(_{2}\)C\(_{2}\)H\(_{1}\)]\(^{2-}\), E=S, Se). They represent rare examples of molecular complexes with Bi⋅⋅⋅EPR\(_{3}\) interactions (R=monoanionic substituent). The \(^{31}\)P NMR chemical shift of EPMe3 has been found to be sensitive to the formation of LA⋅⋅⋅EPMe\(_{3}\) Lewis acid/base interactions (LA=Lewis acid). This corresponds to a modification of the Gutmann–Beckett method and reveals information about the hardness/softness of the Lewis acid under investigation. A series of organobismuth compounds, bismuth halides, and cationic bismuth species have been investigated with this approach and compared to traditional group 13 and cationic group 14 Lewis acids. Especially cationic bismuth species have been shown to be potent soft Lewis acids that may prefer Lewis pair formation with a soft (S/Se‐based) rather than a hard (O/N‐based) donor. Analytical techniques applied in this work include (heteronuclear) NMR spectroscopy, single‐crystal X‐ray diffraction analysis, and DFT calculations. KW - bismuth KW - bonding analysis KW - cationic species KW - HSAB principle KW - Lewis acids Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225808 VL - 26 IS - 45 SP - 10250 EP - 10258 ER - TY - JOUR A1 - Mukhopadhyay, Deb Pratim A1 - Schleier, Domenik A1 - Wirsing, Sara A1 - Ramler, Jaqueline A1 - Kaiser, Dustin A1 - Reusch, Engelbert A1 - Hemberger, Patrick A1 - Preitschopf, Tobias A1 - Krummenacher, Ivo A1 - Engels, Bernd A1 - Fischer, Ingo A1 - Lichtenberg, Crispin T1 - Methylbismuth: an organometallic bismuthinidene biradical JF - Chemical Science N2 - We report the generation, spectroscopic characterization, and computational analysis of the first free (non-stabilized) organometallic bismuthinidene, BiMe. The title compound was generated in situ from BiMe\(_3\) by controlled homolytic Bi–C bond cleavage in the gas phase. Its electronic structure was characterized by a combination of photoion mass-selected threshold photoelectron spectroscopy and DFT as well as multi-reference computations. A triplet ground state was identified and an ionization energy (IE) of 7.88 eV was experimentally determined. Methyl abstraction from BiMe\(_3\) to give [BiMe(_2\)]• is a key step in the generation of BiMe. We reaveal a bond dissociation energy of 210 ± 7 kJ mol\(^{−1}\), which is substantially higher than the previously accepted value. Nevertheless, the homolytic cleavage of Me–BiMe\(_2\) bonds could be achieved at moderate temperatures (60–120 °C) in the condensed phase, suggesting that [BiMe\(_2\)]• and BiMe are accessible as reactive intermediates under these conditions. KW - methylbismuth KW - Photoelektronenspektroskopie Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251657 UR - https://pubs.rsc.org/en/content/articlelanding/2020/SC/D0SC02410D VL - 11 IS - 29 ER - TY - JOUR A1 - Lichtenberg, Crispin T1 - Main‐Group Metal Complexes in Selective Bond Formations Through Radical Pathways JF - Chemistry – A European Journal N2 - Recent years have witnessed remarkable advances in radical reactions involving main‐group metal complexes. This includes the isolation and detailed characterization of main‐group metal radical compounds, but also the generation of highly reactive persistent or transient radical species. A rich arsenal of methods has been established that allows control over and exploitation of their unusual reactivity patterns. Thus, main‐group metal compounds have entered the field of selective bond formations in controlled radical reactions. Transformations that used to be the domain of late transition‐metal compounds have been realized, and unusual selectivities, high activities, as well as remarkable functional‐group tolerances have been reported. Recent findings demonstrate the potential of main‐group metal compounds to become standard tools of synthetic chemistry, catalysis, and materials science, when operating through radical pathways. KW - bond formation KW - catalysis KW - main-group metals KW - organic and inorganic synthesis KW - radicals Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214758 VL - 26 IS - 44 SP - 9674 EP - 9687 ER - TY - JOUR A1 - Hanft, Anna A1 - Lichtenberg, Crispin T1 - Dimerization of 2-[(2-((2-aminophenyl)thio)phenyl)amino]-cyclohepta-2,4,6-trien-1-one through hydrogen bonding, C\(_{19}\)H\(_{16}\)N\(_2\)OS JF - Zeitschrift für Kristallographie - New Crystal Structures N2 - C\(_{19}\)H\(_{16}\)N\(_2\)OS, triclinic, P (1) over bar (no. 2), a= 8.1510(3) angstrom, b = 8.8021(3) angstrom, c =11.3953(5) angstrom, alpha =72.546(2)degrees, beta=84.568(2)degrees, gamma =80.760(2)degrees, V =768.86(5) angstrom(3), Z =2, R\(_{gt}\)(F) = 0.0491, WR\(_{ref}\)(F-2) = 0.1494, T =100 K. KW - crystal structure KW - complexes KW - ligands KW - tropocoronands KW - mononuclear KW - chemistry Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229482 VL - 235 IS - 4 ER - TY - INPR A1 - Braunschweig, Holger A1 - Krummenacher, Ivo A1 - Lichtenberg, Crispin A1 - Mattock, James A1 - Schäfer, Marius A1 - Schmidt, Uwe A1 - Schneider, Christoph A1 - Steffenhagen, Thomas A1 - Ullrich, Stefan A1 - Vargas, Alfredo T1 - Dibora[2]ferrocenophane: A Carbene-Stabilized Diborene in a Strained cis-Configuration T2 - Angewandte Chemie, International Edition N2 - Unsaturated bridges that link the two cyclopentadienyl ligands together in strained ansa metallocenes are rare and limited to carbon-carbon double bonds. The synthesis and isolation of a strained ferrocenophane containing an unsaturated two-boron bridge, isoelectronic with a C=C double bond, was achieved by reduction of a carbene-stabilized 1,1’-bis(dihaloboryl)ferrocene. A combination of spectroscopic and electrochemical measurements as well as density functional theory (DFT) calculations was used to assess the influence of the unprecedented strained cis configuration on the optical and electrochemical properties of the carbene-stabilized diborene unit. Initial reactivity studies show that the dibora[2]ferrocenophane is prone to boron-boron double bond cleavage reactions. KW - Boron KW - Metallocenes KW - Metallocene KW - Bor KW - Diborane KW - density functional calculations KW - strained molecules KW - diborenes Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141981 N1 - This is the pre-peer reviewed version of the following article: Angewandte Chemie, International Edition, Volume 56, Issue 3, 889–892, which has been published in final form at doi:10.1002/anie.201609601. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. ER - TY - JOUR A1 - Hanft, Anna A1 - Radacki, Krzysztof A1 - Lichtenberg, Crispin T1 - Cationic Bismuth Aminotroponiminates: Charge Controls Redox Properties JF - Chemistry – A European Journal N2 - The behavior of the redox‐active aminotroponiminate (ATI) ligand in the coordination sphere of bismuth has been investigated in neutral and cationic compounds, [Bi(ATI)\(_{3}\)] and [Bi(ATI)\(_{2}\)L\(_{n}\)][A] (L=neutral ligand; n=0, 1; A=counteranion). Their coordination chemistry in solution and in the solid state has been analyzed through (variable‐temperature) NMR spectroscopy, line‐shape analysis, and single‐crystal X‐ray diffraction analyses, and their Lewis acidity has been evaluated by using the Gutmann–Beckett method (and modifications thereof). Cyclic voltammetry, in combination with DFT calculations, indicates that switching between ligand‐ and metal‐centered redox events is possible by altering the charge of the compounds from 0 in neutral species to +1 in cationic compounds. This adds important facets to the rich redox chemistry of ATIs and to the redox chemistry of bismuth compounds, which is, so far, largely unexplored. KW - aminotroponiminates KW - bismuth KW - cationic species KW - redox chemistry KW - redox-active ligands Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225669 VL - 27 IS - 20 SP - 6230 EP - 6239 ER - TY - JOUR A1 - Ramler, Jacqueline A1 - Poater, Jordi A1 - Hirsch, Florian A1 - Ritschel, Benedikt A1 - Fischer, Ingo A1 - Bickelhaupt, F. Matthias A1 - Lichtenberg, Crispin T1 - Carbon monoxide insertion at a heavy p-block element: unprecedented formation of a cationic bismuth carbamoyl JF - Chemical Science N2 - Major advances in the chemistry of 5th and 6th row heavy p-block element compounds have recently uncovered intriguing reactivity patterns towards small molecules such as H\(_2\), CO\(_2\), and ethylene. However, well-defined, homogeneous insertion reactions with carbon monoxide, one of the benchmark substrates in this field, have not been reported to date. We demonstrate here, that a cationic bismuth amide undergoes facile insertion of CO into the Bi–N bond under mild conditions. This approach grants direct access to the first cationic bismuth carbamoyl species. Its characterization by NMR, IR, and UV/vis spectroscopy, elemental analysis, single-crystal X-ray analysis, cyclic voltammetry, and DFT calculations revealed intriguing properties, such as a reversible electron transfer at the bismuth center and an absorption feature at 353 nm ascribed to a transition involving σ- and π-type orbitals of the bismuth-carbamoyl functionality. A combined experimental and theoretical approach provided insight into the mechanism of CO insertion. The substrate scope could be extended to isonitriles. KW - carbon monoxide KW - p-block element Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181627 VL - 10 ER - TY - JOUR A1 - Oberdorf, Kai A1 - Hanft, Anna A1 - Ramler, Jacqueline A1 - Krummenacher, Ivo A1 - Bickelhaupt, Matthias A1 - Poater, Jordi A1 - Lichtenberg, Crispin T1 - Bismuth Amides Mediate Facile and Highly Selective Pn–Pn Radical‐Coupling Reactions (Pn=N, P, As) JF - Angewandte Chemie, International Edition N2 - The controlled release of well‐defined radical species under mild conditions for subsequent use in selective reactions is an important and challenging task in synthetic chemistry. We show here that simple bismuth amide species [Bi(NAr\(_2\))\(_3\)] readily release aminyl radicals [NAr\(_2\)]. at ambient temperature in solution. These reactions yield the corresponding hydrazines, Ar\(_2\)N−NAr\(_2\), as a result of highly selective N−N coupling. The exploitation of facile homolytic Bi−Pn bond cleavage for Pn−Pn bond formation was extended to higher homologues of the pnictogens (Pn=N–As): homoleptic bismuth amides mediate the highly selective dehydrocoupling of HPnR\(_2\) to give R\(_2\)Pn−PnR\(_2\). Analyses by NMR and EPR spectroscopy, single‐crystal X‐ray diffraction, and DFT calculations reveal low Bi−N homolytic bond‐dissociation energies, suggest radical coupling in the coordination sphere of bismuth, and reveal electronic and steric parameters as effective tools to control these reactions. KW - bismuth amides KW - radical species KW - pnictogen coupling KW - aminyl radicals KW - diphosphanes KW - heavier pnictogens KW - radical coupling Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236582 VL - 60 IS - 12 ER - TY - JOUR A1 - Lindl, Felix A1 - Lamprecht, Anna A1 - Arrowsmith, Merle A1 - Khitro, Eugen A1 - Rempel, Anna A1 - Dietz, Maximilian A1 - Wellnitz, Tim A1 - Bélanger‐Chabot, Guillaume A1 - Stoy, Andreas A1 - Paprocki, Valerie A1 - Prieschl, Dominik A1 - Lenczyk, Carsten A1 - Ramler, Jacqueline A1 - Lichtenberg, Crispin A1 - Braunschweig, Holger T1 - Aromatic 1,2‐Azaborinin‐1‐yls as Electron‐Withdrawing Anionic Nitrogen Ligands for Main Group Elements JF - Chemistry – A European Journal N2 - The 2‐aryl‐3,4,5,6‐tetraphenyl‐1,2‐azaborinines 1‐EMe\(_{3}\) and 2‐EMe\(_{3}\) (E=Si, Sn; aryl=Ph (1), Mes (=2,4,6‐trimethylphenyl, 2)) were synthesized by ring‐expansion of borole precursors with N\(_{3}\)EMe\(_{3}\)‐derived nitrenes. Desilylative hydrolysis of 1‐ and 2‐SiMe\(_{3}\) yielded the corresponding N‐protonated azaborinines, which were deprotonated with nBuLi or MN(SiMe\(_{3}\))\(_{2}\) (M=Na, K) to the corresponding group 1 salts, 1‐M and 2‐M. While the lithium salts crystallized as monomeric Lewis base adducts, the potassium salts formed coordination polymers or oligomers via intramolecular K⋅⋅⋅aryl π interactions. The reaction of 1‐M or 2‐M with CO\(_{2}\) yielded N‐carboxylate salts, which were derivatized by salt metathesis to methyl and silyl esters. Salt metathesis of 1‐M or 2‐M with methyl triflate, [Cp*BeCl] (Cp*=C\(_{5}\)Me\(_{5}\)), BBr\(_{2}\)Ar (Ar=Ph, Mes, 2‐thienyl), ECl\(_{3}\) (E=B, Al, Ga) and PX\(_{3}\) (X=Cl, Br) afforded the respective group 2, 13 and 15 1,2‐azaborinin‐2‐yl complexes. Salt metathesis of 1‐K with BBr\(_{3}\) resulted not only in N‐borylation but also Ph‐Br exchange between the endocyclic and exocyclic boron atoms. Solution \(^{11}\)B NMR data suggest that the 1,2‐azaborinin‐2‐yl ligand is similarly electron‐withdrawing to a bromide. In the solid state the endocyclic bond length alternation and the twisting of the C\(_{4}\)BN ring increase with the sterics of the substituents at the boron and nitrogen atoms, respectively. Regression analyses revealed that the downfield shift of the endocyclic \(^{11}\)B NMR resonances is linearly correlated to both the degree of twisting of the C\(_{4}\)BN ring and the tilt angle of the N‐substituent. Calculations indicate that the 1,2‐azaborinin‐1‐yl ligand has no sizeable π‐donor ability and that the aromaticity of the ring can be subtly tuned by the electronics of the N‐substituent. KW - 1,2-azaborinine KW - aromaticity KW - crystallographic analyses KW - N-functionalization KW - salt metathesis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312222 VL - 29 IS - 11 ER - TY - JOUR A1 - Hanft, Anna A1 - Rottschäfer, Dennis A1 - Wieprecht, Nele A1 - Geist, Felix A1 - Radacki, Krzysztof A1 - Lichtenberg, Crispin T1 - Aminotroponiminates: Impact of the NO\(_{2}\) Functional Group on Coordination, Isomerisation, and Backbone Substitution JF - Chemistry—A European Journal N2 - Aminotroponiminate (ATI) ligands are a versatile class of redox-active and potentially cooperative ligands with a rich coordination chemistry that have consequently found a wide range of applications in synthesis and catalysis. While backbone substitution of these ligands has been investigated in some detail, the impact of electron-withdrawing groups on the coordination chemistry and reactivity of ATIs has been little investigated. We report here Li, Na, and K salts of an ATI ligand with a nitro-substituent in the backbone. It is demonstrated that the NO2 group actively contributes to the coordination chemistry of these complexes, effectively competing with the N,N-binding pocket as a coordination site. This results in an unprecedented E/Z isomerisation of an ATI imino group and culminates in the isolation of the first “naked” (i. e., without directional bonding to a metal atom) ATI anion. Reactions of sodium ATIs with silver(I) and tritylium salts gave the first N,N-coordinated silver ATI complexes and unprecedented backbone substitution reactions. Analytical techniques applied in this work include multinuclear (VT-)NMR spectroscopy, single-crystal X-ray diffraction analysis, and DFT calculations. KW - aminotroponiminates KW - non-coordinate anionic ligand KW - isomerisation KW - electrophilic substitution KW - alkali metal Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256988 VL - 27 IS - 57 ER -