TY - JOUR A1 - Mencacci, Niccoló E. A1 - Isaias, Ioannis U. A1 - Reich, Martin M. A1 - Ganos, Christos A1 - Plagnol, Vincent A1 - Polke, James M. A1 - Bras, Jose A1 - Hersheson, Joshua A1 - Stamelou, Maria A1 - Pittman, Alan M. A1 - Noyce, Alastair J. A1 - Mok, Kin Y. A1 - Opladen, Thomas A1 - Kunstmann, Erdmute A1 - Hodecker, Sybille A1 - Münchau, Alexander A1 - Volkmann, Jens A1 - Samnick, Samuel A1 - Sidle, Katie A1 - Nanji, Tina A1 - Sweeney, Mary G. A1 - Houlden, Henry A1 - Batla, Amit A1 - Zecchinelli, Anna L. A1 - Pezzoli, Gianni A1 - Marotta, Giorgio A1 - Lees, Andrew A1 - Alegria, Paulo A1 - Krack, Paul A1 - Cormier-Dequaire, Florence A1 - Lesage, Suzanne A1 - Brice, Alexis A1 - Heutink, Peter A1 - Gasser, Thomas A1 - Lubbe, Steven J. A1 - Morris, Huw R. A1 - Taba, Pille A1 - Koks, Sulev A1 - Majounie, Elisa A1 - Gibbs, J. Raphael A1 - Singleton, Andrew A1 - Hardy, John A1 - Klebe, Stephan A1 - Bhatia, Kailash P. A1 - Wood, Nicholas W. T1 - Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers JF - Brain N2 - GTP cyclohydrolase 1, encoded by the GCH1 gene, is an essential enzyme for dopamine production in nigrostriatal cells. Loss-of-function mutations in GCH1 result in severe reduction of dopamine synthesis in nigrostriatal cells and are the most common cause of DOPA-responsive dystonia, a rare disease that classically presents in childhood with generalized dystonia and a dramatic long-lasting response to levodopa. We describe clinical, genetic and nigrostriatal dopaminergic imaging ([(123)I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane single photon computed tomography) findings of four unrelated pedigrees with DOPA-responsive dystonia in which pathogenic GCH1 variants were identified in family members with adult-onset parkinsonism. Dopamine transporter imaging was abnormal in all parkinsonian patients, indicating Parkinson's disease-like nigrostriatal dopaminergic denervation. We subsequently explored the possibility that pathogenic GCH1 variants could contribute to the risk of developing Parkinson's disease, even in the absence of a family history for DOPA-responsive dystonia. The frequency of GCH1 variants was evaluated in whole-exome sequencing data of 1318 cases with Parkinson's disease and 5935 control subjects. Combining cases and controls, we identified a total of 11 different heterozygous GCH1 variants, all at low frequency. This list includes four pathogenic variants previously associated with DOPA-responsive dystonia (Q110X, V204I, K224R and M230I) and seven of undetermined clinical relevance (Q110E, T112A, A120S, D134G, I154V, R198Q and G217V). The frequency of GCH1 variants was significantly higher (Fisher's exact test P-value 0.0001) in cases (10/1318 = 0.75%) than in controls (6/5935 = 0.1%; odds ratio 7.5; 95% confidence interval 2.4-25.3). Our results show that rare GCH1 variants are associated with an increased risk for Parkinson's disease. These findings expand the clinical and biological relevance of GTP cycloydrolase 1 deficiency, suggesting that it not only leads to biochemical striatal dopamine depletion and DOPA-responsive dystonia, but also predisposes to nigrostriatal cell loss. Further insight into GCH1-associated pathogenetic mechanisms will shed light on the role of dopamine metabolism in nigral degeneration and Parkinson's disease. KW - DOPA-responsive-dystonia KW - GCH1 KW - Parkinson's disease KW - dopamine KW - exome sequencing Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121268 VL - 137 IS - 9 ER - TY - JOUR A1 - Majounie, Elisa A1 - Renton, Alan E. A1 - Mok, Kin A1 - Dopper, Elise G. P. A1 - Waite, Adrian A1 - Rollinson, Sara A1 - Chiò, Adriano A1 - Restagno, Gabriella A1 - Nicolaou, Nayia A1 - Simon-Sanchez, Javier A1 - van Swieten, John C. A1 - Abramzon, Yevgeniya A1 - Johnson, Janel O. A1 - Sendtner, Michael A1 - Pamphlett, Roger A1 - Orrell, Richard W. A1 - Mead, Simon A1 - Sidle, Katie C. A1 - Houlden, Henry A1 - Rohrer, Jonathan D. A1 - Morrison, Karen E. A1 - Pall, Hardev A1 - Talbot, Kevin A1 - Ansorge, Olaf A1 - Hernandez, Dena G. A1 - Arepalli, Sampath A1 - Sabatelli, Mario A1 - Mora, Gabriele A1 - Corbo, Massimo A1 - Giannini, Fabio A1 - Calvo, Andrea A1 - Englund, Elisabet A1 - Borghero, Giuseppe A1 - Floris, Gian Luca A1 - Remes, Anne M. A1 - Laaksovirta, Hannu A1 - McCluskey, Leo A1 - Trojanowski, John Q. A1 - Van Deerlin, Vivianna M. A1 - Schellenberg, Gerard D. A1 - Nalls, Michael A. A1 - Drory, Vivian E. A1 - Lu, Chin-Song A1 - Yeh, Tu-Hsueh A1 - Ishiura, Hiroyuki A1 - Takahashi, Yuji A1 - Tsuji, Shoji A1 - Le Ber, Isabelle A1 - Brice, Alexis A1 - Drepper, Carsten A1 - Williams, Nigel A1 - Kirby, Janine A1 - Shaw, Pamela A1 - Hardy, John A1 - Tienari, Pentti J. A1 - Heutink, Peter A1 - Morris, Huw R. A1 - Pickering-Brown, Stuart A1 - Traynor, Bryan J. T1 - Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study JF - The Lancet Neurology N2 - Background We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Methods We screened 4448 patients diagnosed with ALS (El Escorial criteria) and 1425 patients with FTD (Lund-Manchester criteria) from 17 regions worldwide for the GGGGCC hexanucleotide expansion using a repeat-primed PCR assay. We assessed familial disease status on the basis of self-reported family history of similar neurodegenerative diseases at the time of sample collection. We compared haplotype data for 262 patients carrying the expansion with the known Finnish founder risk haplotype across the chromosomal locus. We calculated age-related penetrance using the Kaplan-Meier method with data for 603 individuals with the expansion. Findings In patients with sporadic ALS, we identified the repeat expansion in 236 (7·0%) of 3377 white individuals from the USA, Europe, and Australia, two (4·1%) of 49 black individuals from the USA, and six (8·3%) of 72 Hispanic individuals from the USA. The mutation was present in 217 (39·3%) of 552 white individuals with familial ALS from Europe and the USA. 59 (6·0%) of 981 white Europeans with sporadic FTD had the mutation, as did 99 (24·8%) of 400 white Europeans with familial FTD. Data for other ethnic groups were sparse, but we identified one Asian patient with familial ALS (from 20 assessed) and two with familial FTD (from three assessed) who carried the mutation. The mutation was not carried by the three Native Americans or 360 patients from Asia or the Pacific Islands with sporadic ALS who were tested, or by 41 Asian patients with sporadic FTD. All patients with the repeat expansion had (partly or fully) the founder haplotype, suggesting a one-off expansion occurring about 1500 years ago. The pathogenic expansion was non-penetrant in individuals younger than 35 years, 50% penetrant by 58 years, and almost fully penetrant by 80 years. Interpretation A common Mendelian genetic lesion in C9orf72 is implicated in many cases of sporadic and familial ALS and FTD. Testing for this pathogenic expansion should be considered in the management and genetic counselling of patients with these fatal neurodegenerative diseases. KW - DNA repeat expansion KW - C9orf72 KW - amyotrophic lateral sclerosis KW - frontotemporal dementia KW - cross-sectional studies Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154644 VL - 11 SP - 323 EP - 330 ER -