TY - JOUR A1 - Born, Dennis-Peter A1 - Zinner, Christoph A1 - Düking, Peter A1 - Sperlich, Billy T1 - Multi-Directional Sprint Training Improves Change-Of-Direction Speed and Reactive Agility in Young Highly Trained Soccer Players JF - Journal of Sports Science and Medicine N2 - The aim of this study was to evaluate the effect of a repeated sprint training with multi-directional change-of-direction (COD) movements (RSmulti) compared to repeated shuttle sprints (RSS) on variables related to COD speed and reactive agility. Nineteen highly-trained male U15 soccer players were assigned into two groups performing either RSmulti or RSS. For both groups, each training session involved 20 repeated 15 s sprints interspersed with 30 s recovery. With RSmulti the COD movements were randomized and performed in response to a visual stimulus, while the RSS involved predefined 180° COD movements. Before and following the six training sessions, performance in the Illinois agility test (IAT), COD speed in response to a visual stimulus, 20 m linear sprint time and vertical jumping height were assessed. Both groups improved their performance in the IAT (p < 0.01, ES = 1.13; p = 0.01, ES = 0.55). The COD speed in response to a visual stimulus improved with the RSmulti (p < 0.01, ES = 1.03), but not the RSS (p = 0.46, ES = 0.28). No differences were found for 20 m sprint time (P=0.73, ES = 0.07; p = 0.14, ES = 0.28) or vertical jumping height (p = 0.46, ES = 0.11; p = 0.29, ES = 0.12) for the RSmulti and RSS, respectively. In conclusion, performance in the IAT improved with the RSmulti as well as RSS. With the RSmulti however, the COD movements are performed in response to a visual stimulus, which may result in specific adaptations that improve COD speed and reactive agility in young highly trained soccer players. KW - team sport KW - COD movements KW - repeated shuttle sprints KW - speed KW - Speedcourt Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146866 UR - http://www.jssm.org/researchjssm-15-314.xml.xml VL - 15 ER - TY - JOUR A1 - Zinner, Christoph A1 - Born, Dennis-Peter A1 - Sperlich, Billy T1 - Ischemic preconditioning does not alter performance in multidirectional high-intensity intermittent exercise JF - Frontiers in Physiology N2 - Purpose: Research dealing with ischemic preconditioning (IPC) has primarily focused on variables associated to endurance performance with little research about the acute responses of IPC on repeated multidirectional running sprint performance. Here we aimed to investigate the effects of IPC of the arms and the legs on repeated running sprint performance with changes-of-direction (COD) movements. Methods: Thirteen moderately-to-well-trained team-sport athletes (7 males; 6 females; age: 24 ± 2 years, size: 175 ± 8 cm, body mass: 67.9 ± 8.1 kg) performed 16 × 30 m all-out sprints (15 s rest) with multidirectional COD movements on a Speedcourt\(^{©}\) with IPC (3 × 5 min) of the legs (IPC\(_{leg}\); 240 mm Hg) or of the arms (remote IPC: IPC\(_{remote}\); 180–190 mm Hg) 45 min before the sprints and a control trial (CON; 20 mm Hg). Results: The mean (±SD) time for the 16 × 30 m multidirectional COD sprints was similar between IPC\(_{leg}\) (Mean t: 16.0 ± 1.8 s), IPC\(_{remote}\) (16.2 ± 1.7 s), and CON (16.0 ± 1.6 s; p = 0.50). No statistical differences in oxygen uptake (mean difference: 0%), heart rate (1.1%) nor muscle oxygen saturation of the vastus lateralis (4.7%) and biceps brachii (7.8%) between the three conditions were evident (all p > 0.05). Conclusions: IPC (3 × 5 min) of the legs (220 mm Hg) or arms (180–190 mm Hg; remote IPC) applied 45 min before 16 × 30 m repeated multidirectional running sprint exercise does not improve sprint performance, oxygen uptake, heart rate nor muscle oxygen saturation of the vastus lateralis muscle when compared to a control trial. KW - team sport KW - agility KW - change of direction KW - muscle oxygen saturation KW - near-infrared spectroscopy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159348 VL - 8 ER -