TY - JOUR A1 - Kole, Goutam Kumar A1 - Košćak, Marta A1 - Amar, Anissa A1 - Majhen, Dragomira A1 - Božinović, Ksenija A1 - Brkljaca, Zlatko A1 - Ferger, Matthias A1 - Michail, Evripidis A1 - Lorenzen, Sabine A1 - Friedrich, Alexandra A1 - Krummenacher, Ivo A1 - Moos, Michael A1 - Braunschweig, Holger A1 - Boucekkine, Abdou A1 - Lambert, Christoph A1 - Halet, Jean‐François A1 - Piantanida, Ivo A1 - Müller‐Buschbaum, Klaus A1 - Marder, Todd B. T1 - Methyl Viologens of Bis‐(4’‐Pyridylethynyl)Arenes – Structures, Photophysical and Electrochemical Studies, and their Potential Application in Biology JF - Chemistry – A European Journal N2 - A series of bis‐(4’‐pyridylethynyl)arenes (arene=benzene, tetrafluorobenzene, and anthracene) were synthesized and their bis‐N‐methylpyridinium compounds were investigated as a class of π‐extended methyl viologens. Their structures were determined by single crystal X‐ray diffraction, and their photophysical and electrochemical properties (cyclic voltammetry), as well as their interactions with DNA/RNA were investigated. The dications showed bathochromic shifts in emission compared to the neutral compounds. The neutral compounds showed very small Stokes shifts, which are a little larger for the dications. All of the compounds showed very short fluorescence lifetimes (<4 ns). The neutral compound with an anthracene core has a quantum yield of almost unity. With stronger acceptors, the analogous bis‐N‐methylpyridinium compound showed a larger two‐photon absorption cross‐section than its neutral precursor. All of the dicationic compounds interact with DNA/RNA; while the compounds with benzene and tetrafluorobenzene cores bind in the grooves, the one with an anthracene core intercalates as a consequence of its large, condensed aromatic linker moiety, and it aggregates within the polynucleotide when in excess over DNA/RNA. Moreover, all cationic compounds showed highly specific CD spectra upon binding to ds‐DNA/RNA, attributed to the rare case of forcing the planar, achiral molecule into a chiral rotamer, and negligible toxicity toward human cell lines at ≤10 μM concentrations. The anthracene‐analogue exhibited intracellular accumulation within lysosomes, preventing its interaction with cellular DNA/RNA. However, cytotoxicity was evident at 1 μM concentration upon exposure to light, due to singlet oxygen generation within cells. These multi‐faceted features, in combination with its two‐photon absorption properties, suggest it to be a promising lead compound for development of novel light‐activated theranostic agents. KW - cell imaging KW - DNA/RNA binding KW - methyl viologen KW - singlet oxygen KW - two-photon absorption Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287126 VL - 28 IS - 40 ER - TY - JOUR A1 - Belaidi, Houmam A1 - Rauch, Florian A1 - Zhang, Zuolun A1 - Latouche, Camille A1 - Boucekkine, Abdou A1 - Marder, Todd B. A1 - Halet, Jean-Francois T1 - Insights into the optical properties of triarylboranes with strongly electron-accepting bis(fluoromesityl)boryl groups: when theory meets experiment JF - ChemPhotoChem N2 - The photophysical properties (absorption, fluorescence and phosphorescence) of a series of triarylboranes of the form 4-D-C\(_6\)H\(_4\)-B(Ar)\(_2\) (D=\(^t\)Bu or NPh\(_2\); Ar=mesityl (Mes) or 2,4,6-tris(trifluoromethylphenyl (Fmes)) were analyzed theoretically using state-of-the-art DFT and TD-DFT methods. Simulated emission spectra and computed decay rate constants are in very good agreement with the experimental data. Unrestricted electronic computations including vibronic contributions explain the unusual optical behavior of 4-\(^t\)Bu-C\(_6\)H\(_4\)-B(Fmes)\(_2\) 2, which shows both fluorescence and phosphorescence at nearly identical energies (at 77 K in a frozen glass). Analysis of the main normal modes responsible for the phosphorescence vibrational fine structure indicates that the bulky tert-butyl group tethered to the phenyl ring is strongly involved. Interestingly, in THF solvent, the computed energies of the singlet and triplet excited states are very similar for compound 2 only, which may explain why 2 shows phosphorescence in contrast to the other members of the series. KW - boron KW - density functional calculations KW - luminescence KW - phosphorescence KW - photophysics KW - activated delayes flourescence KW - 3-coordinate organoboron compounds KW - light-emitting-diodes KW - phosphorescene spectra KW - molecular structures KW - high efficiency KW - pi-conjugation KW - trivalent boron KW - single photon KW - donor Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205600 VL - 4 IS - 3 ER - TY - JOUR A1 - Kole, Goutam Kumar A1 - Merz, Julia A1 - Amar, Anissa A1 - Fontaine, Bruno A1 - Boucekkine, Abdou A1 - Nitsch, Jörn A1 - Lorenzen, Sabine A1 - Friedrich, Alexandra A1 - Krummenacher, Ivo A1 - Košćak, Marta A1 - Braunschweig, Holger A1 - Piantanida, Ivo A1 - Halet, Jean-François A1 - Müller-Buschbaum, Klaus A1 - Marder, Todd B. T1 - 2- and 2,7-substituted para-N-methylpyridinium pyrenes: syntheses, molecular and electronic structures, photophysical, electrochemical, and spectroelectrochemical properties and binding to double-stranded (ds) DNA JF - Chemistry - A European Journal N2 - Two N-methylpyridinium compounds and analogous N-protonated salts of 2- and 2,7-substituted 4-pyridyl-pyrene compounds were synthesised and their crystal structures, photophysical properties both in solution and in the solid state, electrochemical and spectroelectrochemical properties were studied. Upon methylation or protonation, the emission maxima are significantly bathochromically shifted compared to the neutral compounds, although the absorption maxima remain almost unchanged. As a result, the cationic compounds show very large apparent Stokes shifts of up to 7200 cm\(^{-1}\). The N-methylpyridinium compounds have a single reduction at ca. −1.5 V vs. Fc/Fc\(^+\) in MeCN. While the reduction process was reversible for the 2,7-disubstituted compound, it was irreversible for the mono-substituted one. Experimental findings are complemented by DFT and TD-DFT calculations. Furthermore, the N-methylpyridinium compounds show strong interactions with calf thymus (ct)-DNA, presumably by intercalation, which paves the way for further applications of these multi-functional compounds as potential DNA-bioactive agents. KW - inorganic chemistry KW - viologens KW - chromophores KW - luminescent KW - pyrenes KW - pyridinium Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256642 VL - 27 IS - 8 ER -