TY - JOUR A1 - Griesbeck, Stefanie A1 - Michail, Evripidis A1 - Rauch, Florian A1 - Ogasawara, Hiroaki A1 - Wang, Chenguang A1 - Sato, Yoshikatsu A1 - Edkins, Robert M. A1 - Zhang, Zuolun A1 - Taki, Masayasu A1 - Lambert, Christoph A1 - Yamaguchi, Shigehiro A1 - Marder, Todd B. T1 - The Effect of Branching on the One‐ and Two‐Photon Absorption, Cell Viability, and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging JF - Chemistry – A European Journal N2 - Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two‐photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two‐photon excited fluorescence (TPEF) live‐cell imaging. KW - boranes KW - cell imaging KW - fluorescence KW - lysosome KW - two-photon excited fluorescence Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212887 VL - 25 IS - 57 SP - 13164 EP - 13175 ER - TY - JOUR A1 - Griesbeck, Stefanie A1 - Michail, Evripidis A1 - Rauch, Florian A1 - Ogasawara, Hiroaki A1 - Wang, Chenguang A1 - Sato, Yoshikatsu A1 - Edkins, Robert M. A1 - Zhang, Zuolun A1 - Taki, Masayasu A1 - Lambert, Christoph A1 - Yamaguchi, Shigehiro A1 - Marder, Todd B. T1 - The Effect of Branching on One- and Two-Photon Absorption, Cell Viability and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging JF - Chemistry - A European Journal N2 - Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two‐photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two‐photon excited fluorescence (TPEF) live‐cell imaging. KW - boranes KW - cell imaging KW - fluerescence KW - lysosome KW - two-photon excited fluorescence Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204829 VL - 25 IS - 57 ER - TY - JOUR A1 - Foster, Jonathan A. A1 - Edkins, Robert M. A1 - Cameron, Gary J. A1 - Colgin, Neil A1 - Fucke, Katharina A1 - Ridgeway, Sam A1 - Crawford, Andrew G. A1 - Marder, Todd B. A1 - Beeby, Andrew A1 - Cobb, Steven L. A1 - Steed, Jonathan W. T1 - Blending Gelators to Tune Gel Structure and Probe Anion-Induced Disassembly JF - Chemistry : A European Journal N2 - Blending different low molecular weight gelators (LMWGs) provides a convenient route to tune the properties of a gel and incorporate functionalities such as fluorescence. Blending a series of gelators having a common bis-urea motif, and functionalised with different amino acid-derived end-groups and differing length alkylene spacers is reported. Fluorescent gelators incorporating 1- and 2-pyrenyl moieties provide a probe of the mixed systems alongside structural and morphological data from powder diffraction and electron microscopy. Characterisation of the individual gelators reveals that although the expected α-urea tape motif is preserved, there is considerable variation in the gelation properties, molecular packing, fibre morphology and rheological behaviour. Mixing of the gelators revealed examples in which: 1) the gels formed separate, orthogonal networks maintaining their own packing and morphology, 2) the gels blended together into a single network, either adopting the packing and morphology of one gelator, or 3) a new structure not seen for either of the gelators individually was created. The strong binding of the urea functionalities to anions was exploited as a means of breaking down the gel structure, and the use of fluorescent gel blends provides new insights into anion-mediated gel dissolution. KW - blend KW - co-gels KW - fluorescence KW - orthogonal self-assembly KW - supramolecular chemistry Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121141 VL - 20 ER -