TY - JOUR A1 - Härterich, Marcel A1 - Matler, Alexander A1 - Dewhurst, Rian D. A1 - Sachs, Andreas A1 - Oppel, Kai A1 - Stoy, Andreas A1 - Braunschweig, Holger T1 - A step-for-step main-group replica of the Fischer carbene synthesis at a borylene carbonyl JF - Nature Communications N2 - The Fischer carbene synthesis, involving the conversion of a transition metal (TM)-bound CO ligand to a carbene ligand of the form [=C(OR’)R] (R, R’ = organyl groups), is one of the seminal reactions in the history of organometallic chemistry. Carbonyl complexes of p-block elements, of the form [E(CO)n] (E = main-group fragment), are much less abundant than their TM cousins; this scarcity and the general instability of low-valent p-block species means that replicating the historical reactions of TM carbonyls is often very difficult. Here we present a step-for-step replica of the Fischer carbene synthesis at a borylene carbonyl involving nucleophilic attack at the carbonyl carbon followed by electrophilic quenching at the resultant acylate oxygen atom. These reactions provide borylene acylates and alkoxy-/silyloxy-substituted alkylideneboranes, main-group analogues of the archetypal transition metal acylate and Fischer carbene families, respectively. When either the incoming electrophile or the boron center has a modest steric profile, the electrophile instead attacks at the boron atom, leading to carbene-stabilized acylboranes – boron analogues of the well-known transition metal acyl complexes. These results constitute faithful main-group replicas of a number of historical organometallic processes and pave the way to further advances in the field of main-group metallomimetics. KW - chemical bonding KW - ligands Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357270 VL - 14 ER -