TY - JOUR A1 - Nadernezhad, Ali A1 - Ryma, Matthias A1 - Genç, Hatice A1 - Cicha, Iwona A1 - Jüngst, Thomasz A1 - Groll, Jürgen T1 - Melt electrowriting of isomalt for high‐resolution templating of embedded microchannels JF - Advanced Material Technologies N2 - Fabrication of microchannels using 3D printing of sugars as fugitive material is explored in different fields, including microfluidics. However, establishing reproducible methods for the controlled production of sugar structures with sub-100 μm dimensions remains a challenge. This study pioneers the processing of sugars by melt electrowriting (MEW) enabling the fabrication of structures with so far unprecedented resolution from Isomalt. Based on a systematic variation of process parameters, fibers with diameters down to 20 μm can be fabricated. The flexibility in the adjustment of fiber diameter by on-demand alteration of MEW parameters enables generating constructs with perfusable channels within polydimethylsiloxane molds. These channels have a diameter that can be adjusted from 30 to 200 μm in a single design. Taken together, the experiments show that MEW strongly benefits from the thermal and physical stability of Isomalt, providing a robust platform for the fabrication of small-diameter embedded microchannel systems. KW - medicine KW - sugar glass printing KW - embedded templating KW - melt electrowriting KW - microfibers KW - microfluidics KW - sacrificial printing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256401 VL - 6 IS - 8 ER - TY - JOUR A1 - Ryma, Matthias A1 - Genç, Hatice A1 - Nadernezhad, Ali A1 - Paulus, Ilona A1 - Schneidereit, Dominik A1 - Friedrich, Oliver A1 - Andelovic, Kristina A1 - Lyer, Stefan A1 - Alexiou, Christoph A1 - Cicha, Iwona A1 - Groll, Jürgen T1 - A Print-and-Fuse Strategy for Sacrificial Filaments Enables Biomimetically Structured Perfusable Microvascular Networks with Functional Endothelium Inside 3D Hydrogels JF - Advanced Materials N2 - A facile and flexible approach for the integration of biomimetically branched microvasculature within bulk hydrogels is presented. For this, sacrificial scaffolds of thermoresponsive poly(2-cyclopropyl-2-oxazoline) (PcycloPrOx) are created using melt electrowriting (MEW) in an optimized and predictable way and subsequently placed into a customized bioreactor system, which is then filled with a hydrogel precursor solution. The aqueous environment above the lower critical solution temperature (LCST) of PcycloPrOx at 25 °C swells the polymer without dissolving it, resulting in fusion of filaments that are deposited onto each other (print-and-fuse approach). Accordingly, an adequate printing pathway design results in generating physiological-like branchings and channel volumes that approximate Murray's law in the geometrical ratio between parent and daughter vessels. After gel formation, a temperature decrease below the LCST produces interconnected microchannels with distinct inlet and outlet regions. Initial placement of the sacrificial scaffolds in the bioreactors in a pre-defined manner directly yields perfusable structures via leakage-free fluid connections in a reproducible one-step procedure. Using this approach, rapid formation of a tight and biologically functional endothelial layer, as assessed not only through fluorescent dye diffusion, but also by tumor necrosis factor alpha (TNF-α) stimulation, is obtained within three days. KW - hydrogels KW - microvasculature KW - melt electrowriting Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318532 VL - 34 IS - 28 ER -