TY - THES A1 - Brückner, Charlotte T1 - The Electronic Structure and Optoelectronic Processes at the Interfaces in Organic Solar Cells Composed of Small Organic Molecules - A Computational Analysis of Molecular, Intermolecular, and Aggregate Aspects T1 - Die elektronische Struktur und die optoelektronischen Prozesse an den Grenzflächen in organischen Solarzellen aus kleinen organischen Molekülen - eine theoretische Analyse auf molekularer, intermolekularer und Aggregatebene N2 - Describing the light-to-energy conversion in OSCs requires a multiscale understanding of the involved optoelectronic processes, i.e., an understanding from the molecular, intermolecular, and aggregate perspective. This thesis presents such a multiscale description to provide insight into the processes in the vicinity of the organic::organic interface, which are crucial for the overall performance of OSCs. Light absorption, exciton diffusion, photoinduced charge transfer at the donor-acceptor interface, and charge separation are included. In order to establish structure-property relationships, a variety of different molecular p-type semiconductors are combined at the organic donor-acceptor heterojunction with fullerene C60, one of the most common acceptors in OSCs. Starting with a comprehensive analysis of the accuracy of diverse ab initio, DFT, and semiempiric methods for the properties of the individual molecules, the intermolecular, and aggregate/device stage are subsequently addressed. At all stages, both methodological concepts and physical aspects in OSCs are discussed to extend the microscopic understanding of the charge generation processes. N2 - Um die Umwandlung von Licht zu Strom in organischen Solarzellen zu verstehen, müssen die beteiligten optoelektronischen Prozesse sowohl auf molekularem als auch auf intermolekularem und auf dem Aggregatniveau beschrieben werden. Diese Arbeit stellt eine solche mehrstufige Beschreibung dar, um zum grundlegenden Verständnis derjenigen Prozesse am organisch::organischen Interface beizutragen, die für die finale Gesamtleistung der Zelle ausschlaggebend sind. Dabei werden die wesentlichen Schritte von der Lichtabsorption und Exzitonendiffusion über den photoinduzierte Charge-Transfer-Schritt am Donor-Akzeptor-Interface bis hin zur endgültigen Ladungstrennung berücksichtigt. Um auf Struktur-Eigenschafts-Beziehungen rückschließen zu können, wurden verschiedene molekulare p-Halbleiter in der heterojunction mit Fulleren C60 kombiniert, einem der gängigsten Akzeptoren in organischen Solarzellen. Nach einer umfangreichen Bewertung der Eignung verschiedener ab initio und semiempirischer Methoden sowie diverser DFT-Funktionale für die Beschreibung der molekularen Eigenschaften wurden intermolekulare und Aggregataspekte diskutiert. Auf allen Ebenen, d.h. auf der molekularen, intermolekularen und auf der Aggregatebene, stehen sowohl methodische Ansätze als auch grundlegendende photophysikalische Überlegungen im Mittelpunkt, um das mikroskopische Verständnis der Ladungsträgererzeugung in organischen Solarzellen zu erweitern. KW - Benchmark KW - Solarzelle KW - organic interfaces KW - benchmark KW - charge carrier generation KW - organische Grenzflächen KW - Benchmark KW - Ladungsträgererzeugung KW - solar cell Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141652 ER - TY - THES A1 - Kern, Julia T1 - Field Dependence of Charge Carrier Generation in Organic Bulk Heterojunction Solar Cells T1 - Feldabhängige Ladungsträgergenerierung in organischen Bulk Heterojunction-Solarzellen N2 - In the field of organic photovoltaics, one of the most intensely researched topics to date is the charge carrier photogeneration in organic bulk heterojunction solar cells whose thorough understanding is crucial for achieving higher power conversion efficiencies. In particular, the mechanism of singlet exciton dissociation at the polymer–fullerene interface is still controversially debated. This work addresses the dissociation pathway via relaxed charge transfer states (CTS) by investigating its field dependence for reference material systems consisting of MDMO-PPV and one of the fullerene derivatives PC61BM, bisPCBM and PC71BM. Field dependent photoluminescence (PL(F)) and transient absorption (TA(F)) measurements give insight into the recombination of charge transfer excitons (CTE) and the generation of polarons, respectively. Optically detected magnetic resonance and atomic force microscopy are used to characterize the morphology of the samples. The comparison of the experimental field dependent exciton recombination recorded by PL(F) and the theoretical exciton dissociation probability given by the Onsager–Braun model yields the exciton binding energy as one of the key parameters determining the dissociation efficiency. The binding energies of both the singlet exciton in neat MDMO-PPV and the CTE in MDMO-PPV:PC61BM 1:1 are extracted, the latter turning out to be significantly reduced with respect to the one of the singlet exciton. Based on these results, the field dependence of CTE dissociation is evaluated for MDMO-PPV:PC61BM blends with varying fullerene loads by PL(F) and TA(F). For higher PC61BM contents, the CTE binding energies decrease notably. This behavior is ascribed to a larger effective dielectric constant for well-intermixed blends and to an interplay between dielectric constant and CTE delocalization length for phase separated morphologies, emphasizing the importance of high dielectric constants for the charge carrier photogeneration process. Finally, the CTE binding energies are determined for MDMO-PPV blends with different fullerene derivatives, focusing on the influence of the acceptor LUMO energy. Here, the experimental results suggest the latter having no or at least no significant impact on the binding energy of the CTE. Variations of this binding energy are rather related to different trap levels in the acceptors which seem to be involved in CTS formation. N2 - Einer der aktuellen Forschungsschwerpunkte im Bereich der organischen Photovoltaik ist die Ladungsträgergenerierung in „Bulk Heterojunction-Solarzellen“, deren Verständnis für das Erreichen höherer Wirkungsgrade essentiell ist. In diesem Zusammenhang wird derzeit vor allem der Dissoziationsmechanismus der Singulett-Exzitonen an der Donator–Akzeptor-Grenzfläche kontrovers diskutiert. Die vorliegende Arbeit adressiert die Dissoziation über relaxierte Ladungstransferzustände (CTS) durch die Untersuchung der Feldabhängigkeit des Prozesses für Referenzsysteme aus MDMO-PPV und den Fullerenderivaten PC61BM, bisPCBM sowie PC71BM. Feldabhängige Photolumineszenz (PL(F)) und transiente Absorption (TA(F)) geben Aufschluss über Rekombination der Ladungstransfer-Exzitonen (CTE) bzw. Polaronengenerierung, während die Morphologie der Proben durch optisch detektierte Magnetresonanz und Rasterkraftmikroskopie charakterisiert wird. Durch den Vergleich der experimentellen feldabhängigen Exzitonenrekombination mit der theoretischen Dissoziationswahrscheinlichkeit nach dem Onsager–Braun-Modell lässt sich die Bindungsenergie der Exzitonen ermitteln, welche die Dissoziationseffizienz entscheidend beeinflusst. Diese Bindungsenergie wird sowohl für das Singulett-Exziton in reinem MDMO-PPV als auch für das CTE in MDMO-PPV:PC61BM 1:1 bestimmt, wobei letztere deutlich geringer als die des Singulett-Exzitons ist. Ausgehend von diesen Ergebnissen wird die Feldabhängigkeit der CTE-Dissoziation für MDMO-PPV:PC61BM-Gemische mit unterschiedlichen Fullerenanteilen durch PL(F) und TA(F) untersucht. Für höhere PC61BM-Konzentrationen nimmt die CTE-Bindungsenergie merklich ab. Dieses Verhalten ist für gut durchmischte Systeme einer höheren dielektrischen Konstante und für phasenseparierte Systeme dem Zusammenspiel zwischen Dielektrizitätskonstante und Delokalisation der CTE zuzuschreiben. Schließlich werden die CTE-Bindungsenergien für Gemische aus MDMO-PPV und unterschiedlichen Fullerenderivaten bestimmt, wobei der Einfluss des LUMO-Niveaus der Akzeptoren im Fokus steht. Dieses scheint jedoch keine oder nur eine geringe Bedeutung für die CTE-Bindungsenergie zu besitzen. Die beobachteten Variationen der Bindungsenergie sind vielmehr auf die Fallenzustände der Akzeptoren zurückzuführen, welche offenbar an der Ausbildung der CTS beteiligt sind. KW - Organische Solarzelle KW - organic photovoltaics KW - charge transfer state KW - bulk heterojunction KW - binding energy KW - charge carrier generation KW - Bindungsenergie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-91963 ER -