TY - JOUR A1 - Wei, Yuxiang A1 - Wang, Junyi A1 - Yang, Weiguang A1 - Lin, Zhenyang A1 - Ye, Qing T1 - Boosting Ring Strain and Lewis Acidity of Borirane: Synthesis, Reactivity and Density Functional Theory Studies of an Uncoordinated Arylborirane Fused to o‐Carborane JF - Chemistry – A European Journal N2 - Among the parent borirane, benzoborirene and ortho‐dicarbadodecaborane‐fused borirane, the latter possesses the highest ring strain and the highest Lewis acidity according to our density functional theory (DFT) studies. The synthesis of this class of compounds is thus considerably challenging. The existing examples require either a strong π‐donating group or an extra ligand for B‐coordination, which nevertheless suppresses or completely turns off the Lewis acidity. The title compound, which possesses both features, not only allows the 1,2‐insertion of P=O, C=O or C≡N to proceed under milder conditions, but also enables the heretofore unknown dearomative 1,4‐insertion of Ar−(C=O)− into a B−C bond. The fusion of strained molecular systems to an o‐carborane cage shows great promise for boosting both the ring strain and acidity. KW - borirane KW - carborane KW - fused boracycles KW - Lewis acidity KW - ring strain Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312089 VL - 29 IS - 5 ER -