TY - JOUR A1 - Lüningschrör, Patrick A1 - Binotti, Beyenech A1 - Dombert, Benjamin A1 - Heimann, Peter A1 - Perez-Lara, Angel A1 - Slotta, Carsten A1 - Thau-Habermann, Nadine A1 - von Collenberg, Cora R. A1 - Karl, Franziska A1 - Damme, Markus A1 - Horowitz, Arie A1 - Maystadt, Isabelle A1 - Füchtbauer, Annette A1 - Füchtbauer, Ernst-Martin A1 - Jablonka, Sibylle A1 - Blum, Robert A1 - Üçeyler, Nurcan A1 - Petri, Susanne A1 - Kaltschmidt, Barbara A1 - Jahn, Reinhard A1 - Kaltschmidt, Christian A1 - Sendtner, Michael T1 - Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease JF - Nature Communications N2 - Autophagy-mediated degradation of synaptic components maintains synaptic homeostasis but also constitutes a mechanism of neurodegeneration. It is unclear how autophagy of synaptic vesicles and components of presynaptic active zones is regulated. Here, we show that Pleckstrin homology containing family member 5 (Plekhg5) modulates autophagy of synaptic vesicles in axon terminals of motoneurons via its function as a guanine exchange factor for Rab26, a small GTPase that specifically directs synaptic vesicles to preautophagosomal structures. Plekhg5 gene inactivation in mice results in a late-onset motoneuron disease, characterized by degeneration of axon terminals. Plekhg5-depleted cultured motoneurons show defective axon growth and impaired autophagy of synaptic vesicles, which can be rescued by constitutively active Rab26. These findings define a mechanism for regulating autophagy in neurons that specifically targets synaptic vesicles. Disruption of this mechanism may contribute to the pathophysiology of several forms of motoneuron disease. KW - autophagy KW - synaptic vesicles KW - Pleckstrin homology containing family member 5 (Plekhg5) KW - regulation KW - motoneuron disease Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170048 VL - 8 IS - 678 ER - TY - JOUR A1 - Metje-Sprink, Janina A1 - Groffmann, Johannes A1 - Neumann, Piotr A1 - Barg-Kues, Brigitte A1 - Ficner, Ralf A1 - Kühnel, Karin A1 - Schalk, Amanda M. A1 - Binotti, Beyenech T1 - Crystal structure of the Rab33B/Atg16L1 effector complex JF - Scientific Reports N2 - The Atg12-Atg5/Atg16L1 complex is recruited by WIPI2b to the site of autophagosome formation. Atg16L1 is an effector of the Golgi resident GTPase Rab33B. Here we identified a minimal stable complex of murine Rab33B(30-202) Q92L and Atg16L1(153-210). Atg16L1(153-210) comprises the C-terminal part of the Atg16L1 coiled-coil domain. We have determined the crystal structure of the Rab33B Q92L/Atg16L1(153-210) effector complex at 3.47 angstrom resolution. This structure reveals that two Rab33B molecules bind to the diverging alpha -helices of the dimeric Atg16L1 coiled-coil domain. We mutated Atg16L1 and Rab33B interface residues and found that they disrupt complex formation in pull-down assays and cellular co-localization studies. The Rab33B binding site of Atg16L1 comprises 20 residues and immediately precedes the WIPI2b binding site. Rab33B mutations that abolish Atg16L binding also abrogate Rab33B association with the Golgi stacks. Atg16L1 mutants that are defective in Rab33B binding still co-localize with WIPI2b in vivo. The close proximity of the Rab33B and WIPI2b binding sites might facilitate the recruitment of Rab33B containing vesicles to provide a source of lipids during autophagosome biogenesis. KW - autophagosome formation KW - ATG12-ATG5 conjugate KW - LC3 lipidation KW - binding sites KW - ATG proteins KW - RAB GTPases KW - family KW - membrane KW - recognition KW - proppins Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230396 VL - 10 ER -