TY - JOUR A1 - Kohl, Patrick L. A1 - Rutschmann, Benjamin A1 - Steffan-Dewenter, Ingolf T1 - Population demography of feral honeybee colonies in central European forests JF - Royal Society Open Science N2 - European honeybee populations are considered to consist only of managed colonies, but recent censuses have revealed that wild/feral colonies still occur in various countries. To gauge the ecological and evolutionary relevance of wild-living honeybees, information is needed on their population demography. We monitored feral honeybee colonies in German forests for up to 4 years through regular inspections of woodpecker cavity trees and microsatellite genotyping. Each summer, about 10% of the trees were occupied, corresponding to average densities of 0.23 feral colonies km\(^{−2}\) (an estimated 5% of the regional honeybee populations). Populations decreased moderately until autumn but dropped massively during winter, so that their densities were only about 0.02 colonies km\(^{−2}\) in early spring. During the reproductive (swarming) season, in May and June, populations recovered, with new swarms preferring nest sites that had been occupied in the previous year. The annual survival rate and the estimated lifespan of feral colonies (n = 112) were 10.6% and 0.6 years, respectively. We conclude that managed forests in Germany do not harbour self-sustaining feral honeybee populations, but they are recolonized every year by swarms escaping from apiaries. KW - pollinator decline KW - nest site selection KW - life-history traits KW - wild honeybees KW - beech forests KW - swarming Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301335 SN - 2054-5703 VL - 9 IS - 8 ER - TY - JOUR A1 - Kohl, Patrick L. A1 - Steffan‐Dewenter, Ingolf T1 - Nectar robbing rather than pollinator availability constrains reproduction of a bee‐flowered plant at high elevations JF - Ecosphere N2 - Abiotic factors are generally assumed to determine whether species can exist at the extreme ends of environmental gradients, for example, at high elevations, whereas the role of biotic interactions is less clear. On temperate mountains, insect‐pollinated plant species with bilaterally symmetrical flowers exhibit a parallel elevational decline in species richness and abundance with bees. This suggests that the lack of mutualistic interaction partners sets the elevational range limits of plants via a reduction in reproductive success. We used the bee‐pollinated mountain plant Clinopodium alpinum (Lamiaceae), which blooms along a continuous 1000‐m elevational gradient and has bilaterally symmetrical flowers, as a model to test the predicted parallel elevational decline in flower visitation and seed production. Although the community of flower visitors changed with elevation, the flower visitation rate by the most frequent visitors, bumble bees (33.8% of legitimate visits), and the overall rate of flower visitation by potential pollinators did not vary significantly with elevation. However, we discovered that nectar robbing by bumble bees and nectar theft by ants, two interactions with potentially negative effects on flowers, sharply increased with elevation. Seed set depended on pollinators across elevations and followed a weak hump‐shaped pattern, peaking at mid‐elevations and decreasing by about 20% toward both elevational range edges. Considering the mid‐ and high elevations, elevational variation in seed production could not be explained by legitimate bee visitation rates but was inversely correlated with the frequency of nectar robbing. Our observations challenge the hypothesis that a decrease in the availability of pollinators limits seed production of bee‐flowered plants at high elevations but suggest that an increase in negative interactions (nectar robbing and larceny) constrains reproductive success. KW - altitudinal gradients KW - bee pollination KW - chalcidoid wasps KW - climatic gradients KW - elevational diversity patterns KW - floral larceny KW - fly pollination KW - mountain ecosystems KW - plant–pollinator interactions KW - range limits KW - zygomorphy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287141 VL - 13 IS - 6 ER -