TY - JOUR A1 - Herrmann, Johannes A1 - Lotz, Christopher A1 - Karagiannidis, Christian A1 - Weber-Carstens, Steffen A1 - Kluge, Stefan A1 - Putensen, Christian A1 - Wehrfritz, Andreas A1 - Schmidt, Karsten A1 - Ellerkmann, Richard K. A1 - Oswald, Daniel A1 - Lotz, Gösta A1 - Zotzmann, Viviane A1 - Moerer, Onnen A1 - Kühn, Christian A1 - Kochanek, Matthias A1 - Muellenbach, Ralf A1 - Gaertner, Matthias A1 - Fichtner, Falk A1 - Brettner, Florian A1 - Findeisen, Michael A1 - Heim, Markus A1 - Lahmer, Tobias A1 - Rosenow, Felix A1 - Haake, Nils A1 - Lepper, Philipp M. A1 - Rosenberger, Peter A1 - Braune, Stephan A1 - Kohls, Mirjam A1 - Heuschmann, Peter A1 - Meybohm, Patrick T1 - Key characteristics impacting survival of COVID-19 extracorporeal membrane oxygenation JF - Critical Care N2 - Background Severe COVID-19 induced acute respiratory distress syndrome (ARDS) often requires extracorporeal membrane oxygenation (ECMO). Recent German health insurance data revealed low ICU survival rates. Patient characteristics and experience of the ECMO center may determine intensive care unit (ICU) survival. The current study aimed to identify factors affecting ICU survival of COVID-19 ECMO patients. Methods 673 COVID-19 ARDS ECMO patients treated in 26 centers between January 1st 2020 and March 22nd 2021 were included. Data on clinical characteristics, adjunct therapies, complications, and outcome were documented. Block wise logistic regression analysis was applied to identify variables associated with ICU-survival. Results Most patients were between 50 and 70 years of age. PaO\(_{2}\)/FiO\(_{2}\) ratio prior to ECMO was 72 mmHg (IQR: 58–99). ICU survival was 31.4%. Survival was significantly lower during the 2nd wave of the COVID-19 pandemic. A subgroup of 284 (42%) patients fulfilling modified EOLIA criteria had a higher survival (38%) (p = 0.0014, OR 0.64 (CI 0.41–0.99)). Survival differed between low, intermediate, and high-volume centers with 20%, 30%, and 38%, respectively (p = 0.0024). Treatment in high volume centers resulted in an odds ratio of 0.55 (CI 0.28–1.02) compared to low volume centers. Additional factors associated with survival were younger age, shorter time between intubation and ECMO initiation, BMI > 35 (compared to < 25), absence of renal replacement therapy or major bleeding/thromboembolic events. Conclusions Structural and patient-related factors, including age, comorbidities and ECMO case volume, determined the survival of COVID-19 ECMO. These factors combined with a more liberal ECMO indication during the 2nd wave may explain the reasonably overall low survival rate. Careful selection of patients and treatment in high volume ECMO centers was associated with higher odds of ICU survival. KW - Covid-19 KW - extracorporeal membrane oxygenation (ECMO) KW - intensive care unit Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299686 VL - 26 IS - 1 ER - TY - JOUR A1 - Farmer, Adam D. A1 - Strzelczyk, Adam A1 - Finisguerra, Alessandra A1 - Gourine, Alexander V. A1 - Gharabaghi, Alireza A1 - Hasan, Alkomiet A1 - Burger, Andreas M. A1 - Jaramillo, Andrés M. A1 - Mertens, Ann A1 - Majid, Arshad A1 - Verkuil, Bart A1 - Badran, Bashar W. A1 - Ventura-Bort, Carlos A1 - Gaul, Charly A1 - Beste, Christian A1 - Warren, Christopher M. A1 - Quintana, Daniel S. A1 - Hämmerer, Dorothea A1 - Freri, Elena A1 - Frangos, Eleni A1 - Tobaldini, Eleonora A1 - Kaniusas, Eugenijus A1 - Rosenow, Felix A1 - Capone, Fioravante A1 - Panetsos, Fivos A1 - Ackland, Gareth L. A1 - Kaithwas, Gaurav A1 - O'Leary, Georgia H. A1 - Genheimer, Hannah A1 - Jacobs, Heidi I. L. A1 - Van Diest, Ilse A1 - Schoenen, Jean A1 - Redgrave, Jessica A1 - Fang, Jiliang A1 - Deuchars, Jim A1 - Széles, Jozsef C. A1 - Thayer, Julian F. A1 - More, Kaushik A1 - Vonck, Kristl A1 - Steenbergen, Laura A1 - Vianna, Lauro C. A1 - McTeague, Lisa M. A1 - Ludwig, Mareike A1 - Veldhuizen, Maria G. A1 - De Couck, Marijke A1 - Casazza, Marina A1 - Keute, Marius A1 - Bikson, Marom A1 - Andreatta, Marta A1 - D'Agostini, Martina A1 - Weymar, Mathias A1 - Betts, Matthew A1 - Prigge, Matthias A1 - Kaess, Michael A1 - Roden, Michael A1 - Thai, Michelle A1 - Schuster, Nathaniel M. A1 - Montano, Nicola A1 - Hansen, Niels A1 - Kroemer, Nils B. A1 - Rong, Peijing A1 - Fischer, Rico A1 - Howland, Robert H. A1 - Sclocco, Roberta A1 - Sellaro, Roberta A1 - Garcia, Ronald G. A1 - Bauer, Sebastian A1 - Gancheva, Sofiya A1 - Stavrakis, Stavros A1 - Kampusch, Stefan A1 - Deuchars, Susan A. A1 - Wehner, Sven A1 - Laborde, Sylvain A1 - Usichenko, Taras A1 - Polak, Thomas A1 - Zaehle, Tino A1 - Borges, Uirassu A1 - Teckentrup, Vanessa A1 - Jandackova, Vera K. A1 - Napadow, Vitaly A1 - Koenig, Julian T1 - International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020) JF - Frontiers in Human Neuroscience N2 - Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice. KW - transcutaneous vagus nerve stimulation KW - minimum reporting standards KW - guidelines & recommendations KW - transcutaneous auricular vagus nerve stimulation KW - transcutaneous cervical vagus nerve stimulation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234346 SN - 1662-5161 VL - 14 ER -