TY - THES A1 - Dietzek, Benjamin T1 - Ultrafast linear and non-linear spectroscopy : from biological light-receptors to artificial light-harvesting systems T1 - Ultraschnelle lineare und nicht-lineare Spektroskopie : Von biologischen Lichtrezeptoren zu künstlichen Lichtsammelsystemen N2 - In the experiments presented in this work, linear and non-linear femtosecond time-resolved spectrsocopy were applied to investigate the structure-function and functiondynamics relationship in biological and artificially designed systems. The experiments presented in this work utilize femtosecond time-resolved transient absorption and transient grating as well as picosecond time-resolved fluorescence spectroscopy to investigate the photophysics and photochemistry of biological photoreceptors and address the light-induced excited-state processes in a particular molecular device that serves as a - structurally - very simple light-harvesting antenna and potentially as a catalysis-switch for the production of hydrogen in solution. The combination of white-light probe transient absorption and coherent transient grating spectroscopies yields spectral information about the excited state absorption in concert with high quality, high signal-to-noise kinetic transients, which allow for precise fitting and therefore very accurate time-constants to be extracted from the data. The use of femtosecond time-resolved transient grating spectroscopy is relatively uncommon in addressing questions concerning the excited-state reaction pathways of complex (biological) systems, and therefore the experiments presented in this work constitute according to the literature the first studies applying this technique to a a metalloporphyrin and an artificial light-harvesting antenna. N2 - In der hier vorliegenden Arbeit wurden die Struktur- Funktions- und Funktions- Dynamik- Beziehungen in biologischen und künstlich synthetisierten Systemen untersucht. Hierfür wurden Femtosekunden zeitaufgelöste lineare und nicht-lineare spektroskopische Techniken verwendet. Mittels transienter Absorptions- und transienter Gitterspektroskopie sowie Pikosenkunden zeitaufgelöster Fluoresezenzmessungen wurden ausgewählte pflanzliche Photorezeptoren untersucht und die Relaxationsprozesse im angeregten Zustand einer artifiziellen Lichtsammelantenne charakterisiert. Die Kombination aus Femtosekundenzeitaufgelöster transienter Absorption unter Verwendung eines Weisslichtsuperkontinuums als Probepuls und kohärenter Vier-Wellen-Mischungs-Spektroskopie erlaubt es, breitbandige spektrale Informationen über einen photo-angeregten Zustand zu gewinnen und gleichzeitig Kinetiken mit einem sehr hohen Signal-Rausch-Verhältnis zu messen. Letztere erlauben einen präzisen Fit, und somit können sehr präzise charakteristische Zerfallskonstanten aus den zeitaufgelösten Daten rekonstruiert werden. Durch den komplexeren Versuchsaufbau eines Vier-Wellen-Mischungs-Experiments verglichen mit dem transienter Absorptionsspektroskopie ist die Verwendung von zeitaufgelöster transienter Gitterspektroskopie zur Untersuchung licht-induzierter Prozesse in komplexen biologischen Systemen noch immer relativ unüblich. Daher stellen die hier präsentierten Ergebnisse die ersten Experimente dar, in denen diese Technik zur Untersuchung von angeregter Zustandsrelaxation in einem Metalloporphyrin und einem künstlichen photosynthetischen Reaktionszentrum eingesetzt wurde. KW - Femtosekundenspektroskopie KW - Photorezeptor KW - Licht-Sammel-Komplex KW - Femtosekunden zeitaufgelöste Spektroskopie KW - biologische Photorezeptoren KW - Übergangsmetallkomplexe KW - künstliche Lichtsammelsysteme KW - femtosecond time-resolved spectroscopy KW - biological photoreceptors KW - transition metal complexes KW - artificial light harvesting systems Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15684 ER - TY - THES A1 - Szeghalmi, Adriana Viorica T1 - The ground and excited state molecular structure of model systems undergoing photochemical processes and the characterization of active agents by means of vibrational spectroscopy and theoretical calculations T1 - Die Molekularstruktur des Grund- und angeregten Zustandes von Modelsystemen bei Photochemischen Prozessen und die Charakterisierung von Wirkstoffen mittels Schwingungsspektroskopie und Theoretische Rechnungen N2 - The present thesis reports about vibrational and quantum chemical investigations on model systems undergoing photochemical processes and pharmaceutically active compounds, respectively. Infrared (IR) and Raman spectroscopy were applied for the characterization of the ground state molecular structure. Moreover, resonance Raman (RR) spectra contain additional information about the resonantly enhanced excited state molecular structure. A quantitative resonance Raman intensity analysis in conjunction with the simultaneous simulation of the absorption spectra by means of time-dependent propagation methods was accomplished in order to extract valuable information about the excited state molecular structures of the investigated systems. Surface enhanced Raman scattering (SERS) allows one to determine the interaction and adsorption site of active agents on a metal substrate. Furthermore, density functional theory (DFT) and potential energy distribution (PED) calculations were carried out for an exact assignment of the vibrational spectra. Complete active space self consistent field (CASSCF) and configuration interaction (CI) calculations for some model systems were also performed to assess the experimental results on the excited state potential surfaces. The fundamentals of resonance Raman spectroscopy are treated in detail, describing the physical processes and emphasizing the theoretical methodologies which allow one to obtain the information about the resonantly excited state via an RR intensity analysis. The Brownian oscillator model to determine the solvent reorganization energy is briefly presented. Furthermore, the SERS enhancement mechanisms and selection rules to determine the orientation of the molecules adsorbed on the metal substrate are discussed. The Hartree-Fock approach to calculate the ground state geometry is expatiated, and the basic characteristics of the CI and CASSCF calculations are specified. The chapter ends with a short description of the DFT calculations. Chapter 4 deals with the investigation of the excited state intramolecular proton transfer of the model system, 1-hydroxy-2-acetonaphthone (HAN). The vibrations showing the highest displacement parameters correspond to stretching and in-plane deformation modes of the naphthalene ring and the conjugated carbonyl group, while the OH stretching mode exhibits no observable enhancement. The cooperative effect of the skeletal vibrations reduces the distance between the carbonyl and hydroxyl oxygen atoms in accordance with a general electron density redistribution. Hence, the leading force in the proton transfer process is the increase in electron density on the carbonyl group and the decrease of the negative charge on the hydroxyl oxygen. In chapter 5 the structural and vibrational characteristics of the organic mixed valence system N,N,N’,N’-tetraphenylphenylenediamine radical cation (1+) are discussed. The resonance Raman measurements showed that at least eight vibrational modes are strongly coupled to the optical charge transfer process in (1+). These Franck-Condon active modes were assigned to symmetric vibrations. The most enhanced band corresponds to the symmetric stretching mode along the N-phenylene-N unit and exhibits the largest vibrational reorganization energy. Nevertheless, symmetric stretching modes of the phenylene and phenyl units as well as deformation modes are also coupled to the electronic process. The total vibrational reorganization energy of these symmetrical modes is dominant, while the solvent induced broadening and reorganization energy are found to be small. Hence, (1+) adopts a symmetrical delocalized Robin-Day Class III structure in the ground state. Chapter 6 reports about a vibrational spectroscopic investigation of a model organic photorefractive thiophene derivative, 2-(N,N-diethylamino)-5-(2’,2’-dicyanovinyl)-thiophene. The geometry of the first excited state were optimized and the FC parameters were calculated using the configuration interaction with single excitations method. These calculations show that the contribution of the zwitterionic structure to the excited state is significantly higher than in the ground state. The resonance Raman spectra indicate that several stretching modes along the bonds connecting the donor and acceptor moieties as well as the S-C stretching vibrations are enhanced. Chapter 7 presents the vibrational analysis of an aziridinyl tripeptide, a cysteine protease inhibitor active drug. The vibrational analysis reveals stronger H-bonding of the aziridine NH unit in the solid state of the aziridinyl tripeptide than in the liquid electrophilic building block, indicating medium strong intermolecular H-bond interactions in the crystal unit. The amide hydrogen atoms of the aziridinyl tripeptide are involved in weaker H-bonds than in an epoxide analogon. Furthermore, the characteristic vibrational modes of the peptide backbone were discussed. Chapter 8 reports on the adsorption mechanism of two related anti-leukemia active agents, 6-mercaptopurine (6MP) and 6-mercaptopurine-ribose (6MPR) on a silver colloid. Both molecules adsorb through the N1 and possibly S atom on the metal surface under basic conditions. The SERS spectra recorded for acidic pH values showed that the ribose derivative exhibits a different adsorption behavior compared to the free base. 6MP probably adsorbs on the silver sol through the N9 and N3 atoms, while 6MPR interacts with the surface via the N7 and probably S atoms. Around critical biological concentrations and pH values i.e. at low concentrations and almost neutral condition (pH 7-9), 6MPR interacts with the substrate through both N7 and N1 atoms, possibly forming two differently adsorbed species, while for 6MP only the species adsorbed via N1 was evidenced. N2 - In der vorliegenden Arbeit wurden schwingungsspektroskopische und quanten-chemische Untersuchungen an unterschiedlichen Modellsystemen, die an photochemischen Prozessen beteiligt sind, und an verschiedenen Pharmazeutika durchgeführt. Die Methoden der Infrarot- (IR) und Raman-Spektroskopie wurden für die Charakterisierung der Grund-zustandsgeometrie verwendet. Darüber hinaus konnten aus Resonanz-Raman- (RR) Spektren zusätzliche Informationen über den elektronisch angeregten Zustand erhalten werden. Diese aufschlussreichen Aussagen über die elektronisch angeregten Zustände der untersuchten Systeme wurden durch die simultane quantitative Analyse der Resonanz-Raman-Spektren und des Absorptionsspektrums gewonnen. Die Anregungsprofile für die Resonanz-Raman-Streuung und die Absorptionsquerschnitte wurden mittels zeitabhängiger Propagationsmethoden berechnet. Oberflächen-verstärkte Raman-Streu- (SERS) Experimente ermöglichten die Charakterisierung der Wechselwirkungen und Adsorptionsbindungsstellen von Wirkstoffen an Metalloberflächen. Des Weiteren wurden Dichtefunktionaltheorie- (DFT) und PED-Rechnungen durchgeführt, um eine genaue Zuordnung der Schwingungsspektren zu gestatten. CASSCF- und CI-Rechnungen wurden in einzelnen Fällen durchgeführt, um sie mit den experimentellen Ergebnissen für die Potenzialhyperfläche des angeregten Zustands vergleichen zu können. Die Grundlagen der Resonanz-Raman-Spekroskopie wurden ausführlich diskutiert. Dabei wurden die physikalischen Prozesse beschrieben und die mathematischen Techniken, die die Bestimmung der Parameter des angeregten Zustands durch die RR-Intensitätsanalyse ermöglichen, hervorgehoben. Das Modell des Brownian-Oszillators für die Ermittlung der Lösungsmittel-Reorganisations-energie wurde kurz beschrieben. Weiterhin wurden die SERS Verstärkungsmechanismen und Auswahlregeln diskutiert. Der Hartree-Fock-Ansatz zur Berechnung des Grundzustandes sowie die CI- und CASSCF-Methoden wurde erläutert. Das Kapitel endete mit einer kurzen Beschreibung der Grundlagen von DFT-Rechnungen. Im vierten Kapitel wurden die Untersuchungen an einem Modell-Systems (1-hydroxy-2-acetonaphthone HAN), das einen Protonentransferprozess im angeregten Zustand zeigt, dargestellt. Die Streck- und Deformationsmoden des Naphthalinrings und der konjugierten Carbonylgruppe weisen die größten Displacement-Parameter auf, während die O-H-Streckschwingung keine Resonanz-Verstärkung erfährt. Diese Gerüst-schwingungsmoden verringern den Abstand zwischen den Carbonyl- und Hydroxyl-Sauerstoffatomen, was mit einer generellen Umverteilung der Elektronendichte einhergeht. Daher wird der Protonentransferprozess durch die Zunahme der Elektronendichte auf dem Carbonylsauerstoffatom und der gleichzeitigen Abnahme der negativen Ladung auf dem Hydroxylsauerstoffatom gesteuert. Im fünften Kapitel wurden die strukturellen und vibronischen Eigenschaften eines organischen gemischtvalenten Systems, des N,N,N’,N’-tetraphenylphenylenediamine Radikalkations (1+), untersucht. Die Resonanz-Raman-Experimente zeigten, dass mindestens acht Schwingungsmoden stark an den optischen Ladungstransferprozess gekoppelt sind. Diese Franck-Condon aktiven Moden wurden vornehmlich symmetrischen Moden zugeordnet. Die am meisten verstärkte Mode entspricht der symmetrischen Streckschwingung entlang der N-Ar-N-Achse. Jedoch sind auch symmetrische Streckschwingungsmoden der Phenyl- und Phyenylen-Gruppen und Deformationsmoden an dem elektronischen Prozess beteiligt. Der Beitrag dieser symmetrischen Moden zur Reorganisationsenergie dominiert, während die Lösungsmittelreorganisationsenergie nur sehr gering ist. Die erhaltenen Ergebnisse beweisen, dass es sich hier um ein symmetrisches delokalisiertes Robin-Day-Class-III-System handelt. Das sechste Kapitel beschäftigt sich mit einer schwingungsspektroskopischen Analyse eines photorefraktiven Thiophen-Derivat-Modellsystems, 2-(N,N-diethylamino)-5(2’,2’-dicyanovinyl)-thiophen. Die Geometrien des Grund- und ersten angeregten Zustands wurden optimiert und die FC Parameter unter Anwendung der CIS Methode berechnet. Diese Rechnungen ergaben, dass der Anteil der zwitterionischen Struktur im angeregten Zustand dominiert. Die Resonanz-Raman-Spektren zeigten, dass mehrere Streckschwingungsmoden entlang der Bindungen, die die Donor- und Akzeptor-Einheiten verknüpfen, und die S-C Streckschwingungsmoden verstärkt wurden. Das siebte Kapitel behandelt die Analyse eines Aziridinyl-Tripeptids, ein Wirkstoff gegen Cystein-Proteasen. Die Schwingungsanalyse ergab eine stärkere Wasserstoffbrückenbindung der Aziridin NH-Gruppe des Aziridinyl-Tripeptids im festen Zustand als in der flüssigen Baueinheit. Die Wasserstoffatome der Amidgruppen des Tripeptids sind an schwächeren Wasserstoffbrückenbindungen als die des Epoxid-Analogons beteiligt. Darüber hinaus wurden die charakteristischen Gerüstschwingungsmoden des Tripeptids diskutiert. Im vorletzten Kapitel wurde der Adsorptionsmechanismus von zwei Anti-Leukämie-Wirkstoffen, 6-Mercaptopurin (6MP) und 6-Mercaptopurin-ribose (6MPR) diskutiert. Unter basischen Bedingungen adsorbieren beide Moleküle über die N1- und S-Atome an der Metalloberfläche. Für biologisch kritischen Konzentrationen und pH-Werten, d.h. für nahezu neutrale Bedingungen (pH-Wert 7-9) und eine geringe Konzentration, wurde festgestellt, dass das 6MPR-Molekül mit dem Substrat sowohl über das N7- als auch N1-Atom wechselwirkt, wobei wahrscheinlich zwei unterschiedlich adsorbierte Spezies vorhanden sind. Im Gegensatz dazu weist das 6MP-Molekül nur eine über das N1-Atom adsorbierte Spezies auf. KW - Photochemie KW - Molekülstruktur KW - Grundzustand KW - Raman-Spektroskopie KW - Angeregter Zustand KW - Resonanz-Raman-Effekt KW - Oberflächenverstärkter Raman-Effekt KW - Dichtefunktionalformalismus KW - Ab-initio-Rechnung KW - Resonanz-Raman KW - Oberflächen-verstärkte Raman Streuung (SERS) KW - DFT- und ab-initio-Rechnungen KW - photochemische Prozesse KW - Wirkstoffe KW - Resonance Raman KW - Surface enhance Raman scattering (SERS) KW - DFT and ab-initio calculations KW - photochemical processes KW - active agents Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11961 ER - TY - THES A1 - Maksimenka, Raman T1 - Techniques in frequency conversion and time-resolved spectroscopy with nonlinear optical processes in the femtosecond regime T1 - Techniken der Frequenzumwandlung und der zeitaufgelösten Spektroskopie mit nichtlinearen optischen Prozessen im Femtosekunden-Regime N2 - Nichtlineare Frequenzumsetzung der niederenergetischen femtosekunden Laserpulsen wurde in den Festkörpermitteln nachgeforscht. Ramanumwandlung im weiss-Licht-freien Regime des impulsiven stimulierten Raman Streuungs wurde erzielt, indem man KGW-Kristall mit den Bessel-Lichtstrahl pumpte. Leistungs-fähiges Superkontinuumerzeugung wurde für die sub-microjule Pulse demonstriert, die in Mikrostrukturfaser fokussiert wurden. Anwendung von Vier-Wellen-Mischung Techniken zur Überwachung der Aufregenzustandsdynamik in den mehratomigen Molekülen wurde demonstriert. Zeitkonstanten der Prozesse, die auf Schwingungsenergiewiederverteilung nach dem ursprunglichen Photoanregung von Stilben-3 bezogen wurden, wurden mittels der Pump-CARS Technik festgestellt, in der CARS-Prozess als wirkungsvoller Modus-vorgewählter Filter diente. Spektrale sowie zeitliche Eigenschaften der elektronischen Entspannungbahnen in den Azulenderivats wurden erforscht, indem man vergänglichen-Bevölkerungs-Gittern und Pump-Probe vergänglichen Absorptions Techniken verwendete. N2 - Nonlinear frequency conversion of low-energy fs laser pulses was investigated in solid-state media. Raman conversion in the white-light-free regime of impulsive stimulated Raman scattering was achieved by pumping KGW crystal with Bessel beam. Efficient supercontinuum generation was demonstrated for sub-microjule pulses focused into microstructure fiber. Application of four-wave mixing techniques to monitoring of the excited-state dynamics in polyatomic molecules was demonstrated. Time constants of the processes related to vibrational energy redistribution upon the initial photoexcitation of stilbene-3 were determined by means of pump-CARS technique, where CARS process served as an effective mode-selective filter. Spectral as well as temporal properties of electronic relaxation pathway in azulene derivatives were explored by using transient population gratings and pump-probe transient absorption techniques. KW - Frequenzumsetzung KW - Femtosekundenspektroskopie KW - Nichtlineare Optik KW - Frequenzumwandlung KW - Femtosekunden Spektroskopie KW - ISRS KW - Pump-CARS KW - nichtlineare Optik KW - frequency conversion KW - femtosecond spectroscopy KW - ISRS KW - pump-CARS KW - nonlinear optics Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14087 ER - TY - THES A1 - Bradeanu, Ioana Lavinia T1 - Photoionization and excitation of free variable size van der Waals clusters in the inner shell regime T1 - Photoionisation und Anregung von van der Waals Clustern variabler Größe im Bereich der Innerschalenanregung N2 - The studies presented in this thesis deal with resonant and non-resonant excitation of free variable size clusters using synchrotron radiation in the soft X-ray regime. The post collision interaction (PCI) effect is investigated in free variable size krypton and argon clusters near the Kr 3d and Ar 2p ionization energies. The core ionization energies of surface and bulk sites in variable size clusters can be clearly distinguished. This is mostly due to the polarization screening. It is found that the asymmetry, which is a consequence of PCI, is characteristically smaller for clusters than for isolated atoms. Moreover, there is less asymmetry for bulk sites than for surface sites in variable size rare gas clusters. We assign the results in terms of mechanisms that are based on quantum mechanical models of post collision interaction. Complementary experiments on the photoionization of free van der Waals clusters are performed by using zero kinetic energy (ZEKE) photoelectron spectroscopy in the Ar 2p-, Kr 3d-, Ne 1s-, and N2-regimes. The experimental approach is also suitable to detect cluster size dependent changes in electronic structure. This also allows us to study post collision interaction in variable size clusters. The parameters of the PCI profiles deduced for ZEKE experiments indicate that there are no significant changes in core ionization dynamics compared to near-threshold experiments. Results from model calculations in Kr 3d ionization energy indicate that different geometric sites can be clearly distinguished from each other by their substantial shift in Kr 3d ionization energy, though the dimer shows almost the same Kr 3d ionization energy as the free atom. A comparison with the experimental results indicates that there is resemblance with the model calculations, even though close-lying ionization energies are blended and require deconvolutions of the experimental spectra. It is evident from the present work that one can observe distinct shifts in core ionization energies in van der Waals clusters that are formed in wide size distributions of a jet expansion. The emission of ultraviolet fluorescence radiation from variable size argon clusters is investigated with high spectral resolution in the Ar 2p-excitation regime. The fluorescence excitation spectra reveal strong fluorescence intensity in the Ar 2p-continuum, but no evidence for the occurrence of discrete low-lying core-exciton states in the near-edge regime. This finding is different from the absorption and photoionization cross sections of argon clusters and the solid. The dispersed fluorescence shows a broad molecular band centered near 280 nm. The present results are consistent with the formation of singly charged, excited moieties within the clusters, which are assigned as sources of the radiative relaxation in the 280 nm regime. A fast energy transfer process (interatomic Coulombic decay, ICD) is assigned to be primarily the origin of these singly charged, excited cations besides intra-cluster electron impact ionization by Auger electrons. Our findings give possibly the first experimental evidence for ICD in the core level regime. Free, variable size nitrogen clusters are investigated in the N 1s excitation regime in comparison with the free molecule and solid nitrogen. The conversion of Rydberg states into core excitons, surface and bulk, was studied. The experimental results are simulated by ab initio calculations using (N2)13 as a reasonable prototype cluster structure that allows us to simulate both surface and bulk properties in comparison with the isolated molecule. The present results clearly show that there are specific properties, such as molecular orientation, in molecular van der Waals clusters, which do not exist in atomic van der Waals clusters. It is shown that inner and outer surface sites give rise to distinct energy shifts of the low lying surface core excitons. N2 - In der vorliegenden Dissertation wurden Experimente zur resonanten und nicht-resonanten Anregung von Clustern variabler Größe durchgeführt. Hierzu kam Synchrotronstrahlung im weichen Röntgenbereich zum Einsatz. Der "Post-Collision Interaction"-Effekt (PCI) wurde im Detail am Beispiel von Krypton und Argon-Clustern im Bereich der Kr 3d- und Ar 2p-Anregung studiert. Es lassen sich die Ionisierungsenergien von Atomen, die an der Oberfläche bzw. im Volumen gebunden sind, klar unterscheiden. Dies ist aufgrund der unterschiedlichen Polarisationsabschirmung möglich, die zu einer Verschiebung der Innerschalen-Ionisierungsenergien führt. Die Linienformen der Photoelektronenbanden werden asymmetrisch, wenn die Anregungsenergie geringfügig über der Ionisierungsenergie liegt. Dies lässt sich auf den PCI-Effekt zurückführen. Es wird beobachtet, dass die Asymmetrie vom isolierten Atom über Oberflächenatome zu den im Volumen gebundenen Atomen abnimmt. Diese Veränderung der Linienformen wird mit Hilfe von Mechanismen, die auf Grundlage von quantenmechanischen Modellen basieren, interpretiert. Komplementäre Experimente wurden an Argon- und Neon-Clustern zur Nullvolt-Photoelektronen-Spektroskopie (ZEKE) durchgeführt (Anregung der Ar 2p-Kante, Kr 3d-Kante, N2 1s und Ne 1s-Kante). Auch mit diesem Ansatz lassen sich größenabhängige Veränderungen der elektronischen Struktur in Clustern sowie die Bedeutung des PCI Effektes bestimmen. Ein Vergleich dieser Resultate mit der Anregung, die nahe der Ionisationsschwelle liegt, zeigt, dass es zu keiner signifikanten Veränderung der Ionisationsdynamik als Funktion der Anregungsenergie kommt. Berechnungen zur Ioniserungsenergien von Krypton-Clustern im Bereich der Kr 3d-Anregung zeigen, dass sich einzelne geometrische Orte klar in ihrer Ionisierungsenergie unterscheiden. Das Krypton-Dimer zeigt allerdings fast dieselbe 3d-Ioniserungsenergie wie das freie Atom. Der Vergleich mit den experimentellen Resultaten zeigt, dass eine gute übereinstimmung zwischen Modell und Experiment besteht. Allerdings müssen die experimentellen Spektren entfaltet werden, da die relativen Verschiebungen der Ionisierungsenergien zu gering sind und die Rumpflochlebensdauer zu einer Verbreiterung der Banden führt. Die Resultate belegen, dass sich ausgezeichnete Werte für Rumpfniveau-Ionisierungsenergien bestimmen lassen, obwohl die Cluster in breiten Größenverteilungen vorliegen. Dies lässt sich durch die ortsspezifische Photoionisation erklären. Die Emission von Fluoreszenzstrahlung im ultravioletten Spektralbereich nach Rumpfniveauanregung wurde im Fall von 2p-angeregten Argon-Clustern untersucht. Die hochaufgel östen Spektren zeigen hohe Intensität im 2p-Kontinuum, jedoch keinen Hinweis auf signifikante Beiträge im Bereich der Rumpfniveau-Excitonen. Dieses Ergebnis unterscheidet sich vom Absoprtions- und Photoionisationsquerschnitt von Argon-Clustern sowie festem Argon. Die dispergierte Fluoreszenz liefert eine intensive Bande bei 280 nm. Dieses Resultat lässt sich mit der Fluoreszenz von einfach geladenen, angeregten Argon-Clustern erklären. Die Bildung von einfach geladenen Ionen nach primärer Doppelionisation im Ar 2p-Kontinuum wird durch einen schnellen Energietransfer-Prozess (Interatomic Coulombic Decay, ICD) erklärt. Er läuft nach der Rumpfniveauanregung ab und liefert, neben der Elektronenstoßionisation durch schnelle Auger-Elektronen, einfach geladene Clusterfragmente, die nachfolgend strahlend relaxieren. Dieses Ergebnis ist als erster Hinweis darauf zu werten, dass der ICD-Prozess auch im Bereich der Innerschalenanregung auftritt. Freie Stickstoff-Cluster variabler Größe wurden im Bereich der N 1s-Anregung untersucht. Hier stand die Umwandlung der Rydberg-Zustände in die entsprechenden Oberflächen- und Volumen-Excitonen in Fokus der Studien. Die Resultate wurden mit denen zu freiem und kondensiertem Stickstoff verglichen. Die experimentellen Resultate lassen auch einen Vergleich mit ab initio Rechnungen zu, wofür (N2)13 als Prototyp-Cluster genutzt wurde, da hier sowohl oberflähen - als auch volumengebundene Moleküle auftreten. Diese Resultate zeigen signifikante Unterschiede im Vergleich zu atomaren Clustern. Es zeigt sich, dass die molekulare Orientierung die Lage der Excitonenbanden beeinflusßt. Ebenso treten signifikante Energieverschiebungen relativ zum isolierten Molekül auf, die sich durch Absorption von Zentren erklären lassen, die entweder auf der inneren bzw. äußeren Oberfläche der Cluster gebunden sind. KW - Photoionisation KW - Van-der-Waals-Cluster KW - Photoelektronenspektroskopie KW - Photoelektronen-Spektroskopie KW - van der Waals Clustern KW - Rumpfniveauanregung KW - PCI KW - ICD KW - photoelectron spectroscopy KW - van der Waals clusters KW - core level excitation KW - PCI KW - ICD Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16372 ER - TY - THES A1 - Gräfe, Stefanie T1 - Laser-control of molecular dynamics T1 - Lasergesteuerte Kontrolle molekularer Dynamik N2 - In this work a new algorithm to determine quantum control fields from the instantaneous response of systems has been developed. The derived fields allow to establish a direct connection between the applied perturbation and the molecular dynamics. The principle is most easily illustrated in regarding a classical forced oscillator. A particle moving inside the respective potential is accelerated if an external field is applied acting in the same direction as its momentum (heating). In contrary, a deceleration is achieved by a field acting in the opposite direction as the momentum (cooling). Furthermore, when the particle reaches a classical turning point and then changes its direction, the sign of the field has to be changed to further drive the system in the desired way. The frequency of the field therefore is in resonance with the oscillator. This intuitively clear picture of a driven classical oscillator can be used for directing (or controlling) quantum mechanical wave packet motion. The efficiency of the instantaneous dynamics algorithm was demonstrated in treating various model problems, the population transfer in double well potentials, excitation and dissociation of selective modes, and the population transfer between electronic states. Although it was not tried to optimize the fields to gain higher yields, the control was found to be very efficient. Driving population transfer in a double well potential could be shown to take place with nearly 100% efficiency. It was shown that selective dissociation within the electronic ground state of HOD can be performed by either maximizing a selected coordinate's differential momentum change or the energy absorption. Concerning the population transfer into excited electronic states, a direct comparison with common control algorithms as optimal control theory and genetic algorithms was accomplished using a one-dimensional representation of methyl iodide. The fields derived from the various control theories were effective in transferring population into the chosen target state but the underlying physical background of the derived optimal fields was not obvious to explain. The instantaneous dynamics algorithm allowed to establish a direct relation between the derived fields and the underlying molecular dynamics. Bound-to-bound transitions could be handled more effectively. This was demonstrated on the sodium dimer in a representation of 3 electronic states being initially in its vibronic ground state. The objective was to transfer population into a predefined excited state. Choosing the first or the second state as a target, the control fields exhibited quite different features. The pulse-structure is related to the excited state wave packet, moving in, and out of the Franck-Condon region. Changing the control objective, the derived control field performed pure electronic transitions on a fast time-scale via a two-step transition. Futhermore, orientational effects have been investigated. The overall-efficiency of the population transfer for differently oriented molecules was about 70 % or more if applying a control field derived for a 45° orientation. Spectroscopic methods to gain information about the outcome of the control process have been investigated. It was shown that pump/probe femtosecond ionization spectroscopy is suited to monitor time-dependent molecular probability distributions. In particular, time-dependent photoelectron spectra are able to monitor the population in the various electronic states. In the last chapter a different possibility of controlling molecules was regarded by investigating molecular iodine with a setup similar to the STIRAP (“Stimulated Raman Adiabatic passage”) scenario. The possibility to extend this technique to a fs-time scale was examined in theory as well as in experiments, the latter being performed by Dr. Torsten Siebert in the Kiefer group, University of Würzburg. It was shown that off-resonant excitation with implementation of the pulses with a higher intensity of the Stokes pulse as compared to the pump pulse - describing a so-called f-STIRAP like configuration - was shown to effectively transfer population into excited ground-state vibrational levels. This was theoretically underlined by comparing the numerically exact coupling case with the adiabatic picture. The process was described to run in the vicinity of adibaticity. A new model explaining the process by the system's vector rotating around the dressed state vector will be adopted in future calculations. Altogether, a new promising algorithm to control dynamical processes based on the instantaneous response has been developed. Because the derived control fields have been shown to be very efficient in selectively influencing molecules, it is to be expected that farther reaching applications can be realized in future investigations. N2 - In dieser Arbeit wurde ein neuer Algorithmus zur Bestimmung von Kontrollfeldern aus der instantanen Respons von Systemen auf die Wirkung von Laserfeldern entwickelt. Die damit berechneten Felder ermöglichen es, eine Verbindung zwischen der Störung durch das Laserfeld und der molekularen Dynamik herzustellen. Das Prinzip lässt sich an einem klassischen Oszillator veranschaulichen: Ein sich innerhalb dieses Oszillatorpotenzials bewegendes Teilchen wird durch ein externes Feld beschleunigt, wenn dieses und der Impuls des Teilchens in die gleiche Richtung weisen. Ein Abbremsen des Teilchens wird durch ein Feld erzielt, welches dem Impuls des Teilchens entgegen gerichtet ist. Wenn das Teilchen in dem Oszillator einen Umkehrpunkt erreicht und dort seine Richtung ändert, wird das Vorzeichen des Feldes an die neue Richtung angepasst: Die Frequenz des Feldes befindet sich in Resonanz mit der Oszillatorfreuqenz. Dieses klassische Bild der erzwungenen Schwingung eines Oszillators kann für die Kontrolle quantenmechanischer Wellenpaketbewegungen angewendet werden. Die Effizienz des Algorithmus' wurde an verschiedenen Problemen, wie dem Populationstransfer (PT) in Doppelminimum-Potenzialen, Anregung und Dissoziation selektiver Moden und den PT in unterschiedliche el. Zuständen aufgezeigt. Obwohl keine Optimierung der Felder bezüglich höherer Ausbeuten durchgeführt wurde, konnte eine hohe Effizienz der Prozesse nachgewiesen werden. Ein PT in Doppelminimum-Potentialen wurde nahezu vollständig erreicht. Selektive Dissoziation innerhalb des el. Grundzustandes des HOD-Moleküls wurde unter Verwendung zweier unterschiedlicher Methoden, der Maximierung der zeitlichen Änderung des Impulses oder der Energieabsorption einer Koordinate, erzielt. Bezüglich des PT in el. angeregte Zustände wurden bekannte Kontrollalgorithmen wie die Theorie der optimalen Kontrolle und genetischer Algorithmen mit dem in dieser Arbeit entwickelten Prinzip der instantanen Respons anhand einer 1D Darstellung des Methyliodids verglichen. Die aus den verschiedenen Theorien konstruierten Felder erzielten einen effektiven PT in den zuvor definierten Zielzustand, jedoch ist der dem zu Grunde liegende, physikalische Hintergrund nicht einfach zu beschreiben. Mit Hilfe des Instantanen-Respons-Algorithmus' konnte eine direkte Relation zwischen den Feldern und der molekularen Dynamik hergestellt werden. Anhand des Na2 in einer Darstellung von 3 elektronischen Zuständen sollte nur ein Zustand selektiv angeregt werden. Je nach Wahl des Zielzustandes zeigten sich deutliche Unterschiede. Selektive Anregung des 1. Zustandes erzeugte ein Feld bestehend aus einer Pulsfolge, die durch ein Wellenpaket im angeregten Zustand, welches sich in und aus dem Franck-Condon Fenster heraus bewegt, erklärt werden konnte. Anregung des 2. Zustandes führte zu einem Feld, welches nicht auf Vibration, sondern rein elektronischer Anregung in einem 2-Stufen-Prozess beruht. Bei der Betrachtung von Orientierungseffekten konnte gezeigt werden, dass PT für alle Orientierungen mit einem Feld, welches aus einer mittleren Orientierung bestimmt wurde, effizient ist. Untersuchungen spektroskopischer Methoden, um Informationen über die Effizienz von Kontrollprozessen zu liefern, zeigten, dass Pump-Probe Ionisationsspektroskopie im Femtosekundenbereich (fs) dazu sehr gut dazu geeignet ist. Im Speziellen konnte mit zeitabh. Photoelektronenspektren die Populationen in den elektronischen Zuständen nach Anlegen des jeweiligen Feldes „beobachtet“ werden. Im letzten Kapitel wurde eine andere Methode der Kontrolle von Molekülen in Anlehnung an einen STIRAP ("Stimulated Raman Adiabatic Passage“) Prozess am Beispiel molekularen Iods vorgestellt. Dabei wurde die Möglichkeit, diese Technik auf die fs-Zeitskala auszudehnen,in Theorie und Experiment untersucht, wobei die Messungen von Dr. Torsten Siebert (Universität Würzburg, Arbeitskreis Prof. Kiefer) durchgeführt worden sind. Nicht-resonante Anregung, mit einer Abfolge der Pulse, in der der Stokes-Puls mit der höheren Intensität im Vergleich zum Pump-Puls in einer f-STIRAP-artigen Anordnung dem Pump-Puls vorausgeht, führte zu einem effizienten PT in einen schwingungsangeregten Zustand im el. Grundzustand. Dies konnte durch einen Vergleich des numerisch exakten Falls mit einer adiabatischen Behandlung theoretisch untermauert werden. Die zu Grunde liegenden Prozesse sind näherungsweise durch adiabatisches Verhalten charakterisiert. Dazu wird gerade ein neues Modell entwickelt, welches den Prozess mit einem um einen dressed-state rotierenden Vektor im Hilbertraum erklärt. Zusammenfassend wurde in dieser Arbeit ein Algorithmus zur Kontrolle von Moleküldynamik entwickelt, der auf der instantanen Antwort eines Systems bei Wechselwirkung mit einem elektrischen Feld beruht. Die daraus berechneten Kontrollfelder sind sehr effizient bezüglich einer selektiven Kontrolle von Molekülen und versprechen noch viele zukünftige Anwendungsmöglichkeiten. KW - Laserstrahlung KW - Molekulardynamik KW - Mehrphotonenprozess KW - Quantenmechanik KW - Quantendynamik KW - Kontrolltheorie KW - STIRAP KW - geformte Laserfelder KW - Multi-Photonen Prozesse KW - quantum dynamics KW - control theory KW - STIRAP KW - pulse shaping KW - multi-photon processes Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13388 ER - TY - THES A1 - Babocsi, Krisztina T1 - Characterization of II-VI semiconductor nanostructures by low wavenumber raman- and four-wave-mixing spectroscopy T1 - Charakterisierung II-VI Halbleiter Nanostrukturen bei Raman- und Femtosekunden Vier Wellen Mischen Spektroskopie N2 - Es ist bekannt, dass räumlich eingeschränkte Ladungsträger in niederdimensionalen Halbleitern zur Verstärkung optischer und elektronischer Eigenschaften solcher Nanostrukturen beitragen. Die Physik des "Quantum Confinements" ist trotz umfangreicher Nachforschungen noch immer nicht völlig verstanden. Die vorliegende Arbeit beinhaltet eine qualitative Studie quasi-nulldimensionaler II-VI Halbleiter Nanostrukturen. Es wurden handelsübliche und wärmebehandelte CdSxSe1-x Quantenpunkte (QDs) mittels linearer und nicht-linearer Spektroskopie untersucht. Im Rahmen nicht-resonanter Raman Spektroskopie wurden Schlüsseleigenschaften der QDs, wie z.B. der Durchmesser und die Größenverteilung, bestimmt. Die Anordnung der Energieniveaus in einer atom-ähnlichen Struktur hat die Verstärkung der Intensität akustischer Phononen zur Folge, welche im Bulk nicht nachgewiesen werden können. In Nanokristallen sind nur zwei Sorten akustischer Vibrationen Raman-aktiv: Die kugelsymmetrischen (l = 0) und die quadrupolaren (l=2) Vibrationen, die durch linear polarisierte Laserpulse selektiv angeregt werden können. Die Größe der QDs wurde durch Berücksichtigen der Abhängigkeit der Vibrationsfrequenz akustischer Phononen von dem Durchmesser des Nanokristalls berechnet. Die Größenverteilung der QDs ist aus dem normalisierten FWHM ("full width at half maximum") der symmetrischen Vibration bestimmt worden. Die Relaxationsprozesse in Quantenpunkten finden auf einer Pikosekundenskala statt, zu deren Untersuchung ultraschnelle Spektroskopiemethoden mit Laserpulsen im Femtosekundenbereich notwendig sind. Es wurden in einer Glasmatrix eingebettete CdS0.6Se0.4 QDs von 9.1 nm Durchmesser mittels Fs-VWM- und Fs-PPT-Spektroskopie untersucht. In beiden Fällen wurden zirkular polarisierte Fs-Laserpulse eingesetzt. Es ist gezeigt worden, dass die Auswahlregeln für die Polarisation sehr stark von der Symmetrie der Nanokristalle abhängig sind. Es ist gezeigt worden, dass die angeregten Nanokristalle der Symmetriegruppe C2v oder niedriger angehören und der Nachweis einer hexagonalen Struktur der Nanokristalle wurde erbracht. Die Gültigkeit des Vier-Niveau-Modells wurde ebenfalls nachgewiesen. Dieses Modell enthält einen Grundzustand, zwei Exzitonzustände und einen Biexzitonenzustand. Das Entstehen der VWM- und PPT-Signale in verbotenen Polarisationsgeometrien wurde durch das Auftreten starker Coulomb-Wechselwirkung zwischen Exzitonen, die sich in demselben QD befinden, und durch die niedrige Symmetrie der QDs erklärt. Aufgrund der quadratischen Abhängigkeit der Intensitäten der VWM-Signale von der Intensität der PPT-Signale, konnten die Ergebnisse der VWM-Messungen durch PPT-Untersuchungen geprüft werden. Die Effizienz der Methode der zirkular polarisierten Fs-VWM-Spektroskopie wurde bei der Untersuchung von in einer Glasmatrix eingebetteten wärmebehandelten CdSe Quantenpunkten noch einmal bestätigt. Die Aufmerksamkeit auf Nicht-Phonon-Relaxationsmechanismen des Grund- und angeregten Zustands des Exzitons gerichtet. Außerdem konnte die Abhängigkeit der Kristallasymmetrie von der Nanopartikelgröße und von den Wachstumsbedingungen abgeschätzt werden. Es zeigte sich, dass qualitativ hochwertige Quantenpunkte am effizientesten durch lange Wachstumszeiten bei niedrigen Temperaturen hergestellt werden können. Dabei haben die Nanokristalle genügend Zeit für „Nukleation“ und nehmen eine symmetrischere Form an. Außerdem ist es nachgewiesen worden, dass die Exzitonrelaxation sehr stark von den Coulomb-Wechselwirkungen zwischen den Ladungsträgern abhängt. Die Relaxationsprozesse der Exzitonen werden sowohl durch die Auger Selbstionisation, als auch durch den anschließenden Einfang der Ladungsträger in tiefen Fallen (an der Quantenpunktoberfläche und/oder in der dielektrischen Matrix) deutlich verlangsamt. Dadurch wird die Lebensdauer der Exzitonen deutlich verkürzt und liegt im Pikosekundenbereich. Die Relaxation der Exzitonen von höheren Energieniveaus in den Grundzustand erfolgt auch auf zwei Wegen: Am Anfang des Relaxationsprozesses (t31 ~ 200 fs) ist Auger-Thermalisierung der Ladungsträger für die Relaxation des Elektrons von seinem angeregten 1pe Zustand auf sein niedrigeres 1se Energieniveau verantwortlich. Wärenddessen erfolgt die Relaxation des Lochs sehr schnell über sein dichtes Spektrum von Valenzbandzuständen. Diesem Prozess folgt unmittelbar der Einfang der Ladungsträger in tiefen Fallen, die sich an der Nanokristall-Glasmatrix-Grenzfläche befinden. Diese Fallen sind eine direkte Konsequenz der Asymmetrie des Nanokristalls: je zahlreicher und je tiefer die Fallen, desto höher ist die Asymmetrie des Kristalls. Im Rahmen dieser Arbeit ist eine komplette Charakterisierung der in einer Glas- matrix eingebetteten CdSSe-Quantenpunkte gelungen. Die wichtigsten Eigenschaften, wie z.B. die Größe und die Größenverteilung der Quantenpunkte, sind durch polarisierte Raman-Messungen bestimmt worden. Um ein komplettes Bild über die Nanokristalle zu bekommen, sind weitere nicht-lineare Spektroskopiemethoden eingesetzt worden. Polarisierte VWM Spektroskopie wurde zur Untersuchung verschiedener Quantenpunktensembles erfolgreich eingesetzt und daraus sind wertvolle Informationen über die Symmetrie der Nanokristalle gewonnen worden. Weiterhin sind die Exzitonrelaxationsmechanismen beschrieben worden, die die Verstärkung der optischen nicht-linearen Eigenschaften und starke Coulomb-Wechselwirkungen zwischen Exzitonen erklären. Durch die Untersuchung der Auswirkung verschiedener Wachstumsbedingungen auf die Symmetrie der QDs stellt diese Arbeit einen ergänzenden Beitrag zu Herstellungsverfahren qualitativ hochwertiger Quantenpunkte dar. N2 - The enhancement of electronic and optical properties of semiconductor nanostructures is known as a direct consequence of the spatial confinement of carriers. However, the physics of quantum confinement is still not entirely understood. This work focuses on a qualitative study of quasi-zero dimensional II-VI semiconductor nanostructures (quantum dots QDs). In particular, commercially available as-received and heat treated CdSxSe1-x QDs embedded in a dielectric matrix were investigated by means of linear and nonlinear spectroscopy techniques. Low wavenumber Raman in off-resonance scattering regime was applied in order to obtain key-properties of the nanocrystals, such as the QD's size and the distribution of the QD's size inside the inhomogeneous broadening. Moreover, by careful selection of the polarization geometries, different acoustic vibrational modes could be evidenced. In comparison to the bulk, 3D confinement of carriers leads to modifications in the energy distribution in a QD and as a consequence, the intensity of the acoustical phonons is enhanced. However, only 2 acoustic vibrational modes (labelled l=0 and l=2) are Raman-active, which were selectively excited using linear polarized laser light in parallel- and cross-polarized excitation geometries. The QD's size was determined using the dependence of the frequency of the acoustic vibrational mode on the diameter of the vibrating particle, whereas the QD's size distribution was estimated from the normalized full width at the half of the maximum (FWHM) of the symmetric acoustic vibrational mode. In order to study relaxation mechanisms, which in quantum confined systems occur on a ps time scale, ultrafast spectroscopy techniques using laser pulses in the fs range must be employed. To this purpose, fs-FWM and fs-PPT measurements were performed on CdS0.6Se0.4 QDs of 9.1 nm in diameter, embedded in a glass matrix. The laser pulses employed in these experiments were circularly polarized, careful selection of the polarization geometries making different nonlinear processes available to study. It was shown that the relaxation of polarization selection rules depend strongly on the symmetry of the nanocrystals under discussion. The investigated nanocrystals belong to the symmetry group C2v or lower and their hexagonal crystal shape could be evidenced. The relaxation of selection rules was explained in the framework of the 4-level system, including a ground state, two exciton states and a biexcitons state. The appearance of FWM and PPT signals in forbidden polarization geometries was shown to be due to exciton state splitting due to lowering of the QD’s symmetry and due to the strong Coulomb interaction between carriers belonging to the same nanocrystal. Moreover, the significant difference in the origin of the gratings created by two pulses having the same and opposite polarizations, respectively. The intensity of the FWM signals should be the square of the intensity of the PPT signals and therefore the PPT measurements were employed as a check method for the results yielded by the FWM technique. The efficiency of circularly polarized femtosecond FWM spectroscopy techniques was proved once more in the investigation of heat treated CdSe QDs embedded in a dielectric matrix. The role of non-phonon energy relaxation mechanisms in the exciton ground and excited state of the QDs ensemble was extensively studied. Moreover, the dependence of the crystal shape asymmetry on the particle size and on the growth conditions could be estimated. It was shown, that the most efficient procedure to grow high quality nanocrystals is a longer heat treating at lower temperatures. In this case, the particles have more time to "nucleate" and to adopt a more "symmetric" shape. Further, the relaxation of excitons was extensively investigated. It was shown, that the electron intraband dynamics depend strongly on the Coulomb interaction between electrons and holes. Even at low excitation density, the Auger processes cannot be ignored. Auger autoionization of excitons followed by capture of carriers in surface states and deep traps in the dielectric matrix slow down the exciton relaxation process leading to an exciton lifetime ranging on a ps time scale. The relaxation of excitons from higher lying energy levels occurs also on two paths. At the beginning of the relaxation process (t31 < 400 fs), Auger-like thermalization of carriers is responsible for relaxation of the electron from 1pe into its 1se state, while the hole relaxes rapidly through its dense spectrum of states in the valence band. This process is immediately followed by capturing of carriers in deep traps, situated at the semiconductor-dielectric heterointerface. The traps are a consequence of the QD's asymmetry: the more and the deeper the traps, the higher the asymmetry of the nanocrystals (the band offset  is larger). This work presents a complete characterization of CdSSe QDs embedded in a glass matrix. The most important properties of the nanocrystals like QD's size and size distribution inside the inhomogeneous broadening were determined by means of low wavenumber Raman spectroscopy. In order to draw a full picture of these nanoparticles further complementary nonlinear spectroscopy techniques were used. Invaluable conclusions were available as a result of TI-FWM techniques applied in the framework of transient grating on 3D confined nanocrystals embedded in a glass matrix. The polarized the TI-FWM measurements were successfully performed on different QDs ensembles in order to determine symmetry properties and to describe the ultrafast relaxation mechanisms. This work brings additional contribution concerning the preparation of high quality QDs by presenting the effect of different growth conditions on the QDs symmetry, thus indicating a way for efficient manufacturing of nanocrystals. KW - Zwei-Sechs-Halbleiter KW - Raman-Spektroskopie KW - Femtosekundenspektroskopie KW - Vierwellenmischung KW - niederdimensionale Halbleiter KW - Raman Spektroskopie KW - vier Wellen Mischen Spektroskopie KW - Symmetrie der Quantenpunkte KW - semiconductor nanostructures KW - polarized low wavenumber Raman spectroscopy KW - four wave mixing spectroscopy KW - QD's symmetry Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12551 ER -