TY - JOUR A1 - Knies, Kerstin A1 - Schuster, Beatrice A1 - Ameziane, Najim A1 - Rooimans, Martin A1 - Bettecken, Thomas A1 - de Winter, Johan A1 - Schindler, Detlev T1 - Genotyping of Fanconi Anemia Patients by Whole Exome Sequencing: Advantages and Challenges N2 - Fanconi anemia (FA) is a rare genomic instability syndrome. Disease-causing are biallelic mutations in any one of at least 15 genes encoding members of the FA/BRCA pathway of DNA-interstrand crosslink repair. Patients are diagnosed based upon phenotypical manifestationsand the diagnosis of FA is confirmed by the hypersensitivity of cells to DNA interstrand crosslinking agents. Customary molecular diagnostics has become increasingly cumbersome, time-consuming and expensive the more FA genes have been identified. We performed Whole Exome Sequencing (WES) in four FA patients in order to investigate the potential of this method for FA genotyping. In search of an optimal WES methodology we explored different enrichment and sequencing techniques. In each case we were able to identify the pathogenic mutations so that WES provided both, complementation group assignment and mutation detection in a single approach. The mutations included homozygous and heterozygous single base pair substitutions and a two-base-pair duplication in FANCJ, -D1, or - D2. Different WES strategies had no critical influence on the individual outcome. However, database errors and in particular pseudogenes impose obstacles that may prevent correct data perception and interpretation, and thus cause pitfalls. With these difficulties in mind, our results show that WES is a valuable tool for the molecular diagnosis of FA and a sufficiently safe technique, capable of engaging increasingly in competition with classical genetic approaches. KW - Medizin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77985 ER - TY - JOUR A1 - Fernández-Rodríguez, Juana A1 - Quiles, Francisco A1 - Blanco, Ignacio A1 - Teulé, Alex A1 - Feliubadaló, Lídia A1 - del Valle, Jesús A1 - Salinas, Mónica A1 - Izquierdo, Ángel A1 - Darder, Esther A1 - Schindler, Detlev A1 - Capellá, Gabriel A1 - Brunet, Joan A1 - Lázaro, Conxi A1 - Angel Pujana, Miguel T1 - Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families JF - BMC Cancer N2 - Background: Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the SLX4 gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of SLX4 in German or Byelorussian familial cases of breast cancer without detected mutations in BRCA1 or BRCA2 has been completed, with globally negative results. Methods: The genomic region of SLX4, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of BRCA1 or BRCA2 mutations. Results: This mutational analysis revealed extensive genetic variation of SLX4, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes) in a set of controls (138 women and 146 men) did not detect seven of them. Conclusions: Overall, while the results of this study do not identify clearly pathogenic mutations of SLX4 contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease. KW - SLX4 KW - Holliday junction reolvass KW - Fanconi-anemia subtype KW - susceptibility gene KW - helicase BRIP1 KW - ovarian cancer KW - DNA repair KW - mutations KW - protein KW - RAD51C Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131772 VL - 12 IS - 84 ER - TY - JOUR A1 - Gavvovidis, Ioannis A1 - Rost, Isabell A1 - Trimborn, Marc A1 - Kaiser, Frank J. A1 - Purps, Josephine A1 - Wiek, Konstanze A1 - Haneberg, Helmut A1 - Neitzel, Heidemarie A1 - Schindler, Detlev T1 - A Novel MCPH1 Isoform Complements the Defective Chromosome Condensation of Human MCPH1-Deficient Cells N2 - Biallelic mutations in MCPH1 cause primary microcephaly (MCPH) with the cellular phenotype of defective chromosome condensation. MCPH1 encodes a multifunctional protein that notably is involved in brain development, regulation of chromosome condensation, and DNA damage response. In the present studies, we detected that MCPH1 encodes several distinct transcripts, including two major forms: full-length MCPH1 (MCPH1-FL) and a second transcript lacking the six 39 exons (MCPH1De9–14). Both variants show comparable tissue-specific expression patterns, demonstrate nuclear localization that is mediated independently via separate NLS motifs, and are more abundant in certain fetal than adult organs. In addition, the expression of either isoform complements the chromosome condensation defect found in genetically MCPH1-deficient or MCPH1 siRNA-depleted cells, demonstrating a redundancy of both MCPH1 isoforms for the regulation of chromosome condensation. Strikingly however, both transcripts are regulated antagonistically during cell-cycle progression and there are functional differences between the isoforms with regard to the DNA damage response; MCPH1-FL localizes to phosphorylated H2AX repair foci following ionizing irradiation, while MCPH1De9–14 was evenly distributed in the nucleus. In summary, our results demonstrate here that MCPH1 encodes different isoforms that are differentially regulated at the transcript level and have different functions at the protein level. KW - MCPH1 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75050 ER -