TY - JOUR A1 - Hassouna, I. A1 - Ott, C. A1 - Wüstefeld, L. A1 - Offen, N. A1 - Neher, R. A. A1 - Mitkovski, M. A1 - Winkler, D. A1 - Sperling, S. A1 - Fries, L. A1 - Goebbels, S. A1 - Vreja, I. C. A1 - Hagemeyer, N. A1 - Dittrich, M. A1 - Rossetti, M. F. A1 - Kröhnert, K. A1 - Hannke, K. A1 - Boretius, S. A1 - Zeug, A. A1 - Höschen, C. A1 - Dandekar, T. A1 - Dere, E. A1 - Neher, E. A1 - Rizzoli, S. O. A1 - Nave, K.-A. A1 - Sirén, A.-L. A1 - Ehrenreich, H. T1 - Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus JF - Molecular Psychiatry N2 - Recombinant human erythropoietin (EPO) improves cognitive performance in neuropsychiatric diseases ranging from schizophrenia and multiple sclerosis to major depression and bipolar disease. This consistent EPO effect on cognition is independent of its role in hematopoiesis. The cellular mechanisms of action in brain, however, have remained unclear. Here we studied healthy young mice and observed that 3-week EPO administration was associated with an increased number of pyramidal neurons and oligodendrocytes in the hippocampus of similar to 20%. Under constant cognitive challenge, neuron numbers remained elevated until >6 months of age. Surprisingly, this increase occurred in absence of altered cell proliferation or apoptosis. After feeding a \(^{15}\)N-leucine diet, we used nanoscopic secondary ion mass spectrometry, and found that in EPO-treated mice, an equivalent number of neurons was defined by elevated \(^{15}\)N-leucine incorporation. In EPO-treated NG2-Cre-ERT2 mice, we confirmed enhanced differentiation of preexisting oligodendrocyte precursors in the absence of elevated DNA synthesis. A corresponding analysis of the neuronal lineage awaits the identification of suitable neuronal markers. In cultured neurospheres, EPO reduced Sox9 and stimulated miR124, associated with advanced neuronal differentiation. We are discussing a resulting working model in which EPO drives the differentiation of non-dividing precursors in both (NG2+) oligodendroglial and neuronal lineages. As endogenous EPO expression is induced by brain injury, such a mechanism of adult neurogenesis may be relevant for central nervous system regeneration. KW - neural stem-cells KW - recombinat-human-erythropoietin KW - cognitive functions KW - pyramidal neurons KW - nervous-sytem KW - brain-injury KW - mouse-brain KW - progenitors KW - mice KW - memory Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186669 VL - 21 IS - 12 ER - TY - JOUR A1 - Düzel, Emrah A1 - van Praag, Henriette A1 - Sendtner, Michael T1 - Can physical exercise in old age improve memory and hippocampal function? JF - Brain N2 - Physical exercise can convey a protective effect against cognitive decline in ageing and Alzheimer’s disease. While the long-term health-promoting and protective effects of exercise are encouraging, it’s potential to induce neuronal and vascular plasticity in the ageing brain is still poorly understood. It remains unclear whether exercise slows the trajectory of normal ageing by modifying vascular and metabolic risk factors and/or consistently boosts brain function by inducing structural and neurochemical changes in the hippocampus and related medial temporal lobe circuitry—brain areas that are important for learning and memory. Hence, it remains to be established to what extent exercise interventions in old age can improve brain plasticity above and beyond preservation of function. Existing data suggest that exercise trials aiming for improvement and preservation may require different outcome measures and that the balance between the two may depend on exercise intensity and duration, the presence of preclinical Alzheimer’s disease pathology, vascular and metabolic risk factors and genetic variability. KW - hippocampus KW - exercise KW - cerebral blood flow KW - Alzheimer's disease KW - memory Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190721 VL - 139 IS - 3 ER -