TY - JOUR A1 - Arand, Katja A1 - Bieler, Evi A1 - Dürrenberger, Markus A1 - Kassemeyer, Hanns-Heinz T1 - Developmental pattern of grapevine (Vitis vinifera L.) berry cuticular wax: Differentiation between epicuticular crystals and underlying wax JF - PLoS ONE N2 - The grapevine berry surface is covered by a cuticle consisting of cutin and various lipophilic wax compounds. The latter build the main barrier for transpirational water loss and protect the fruit against environmental factors e.g. pests, mechanical impacts or radiation. The integrety of the fruit surface is one important key factor for post-harvest quality and storage of fruits. Nonetheless, the developmental pattern of cuticular wax was so far only investigated for a very limited number of fruits. Therefore, we performed comparative investigations on the compositional and morphological nature of epicuticular wax crystals and underlying wax during fruit development in Vitis vinifera. The main compound oleanolic acid belongs to the pentacyclic triterpenoids, which occur very early in the development in high amounts inside the cuticle. The amount increases until veraison and decreases further during ripening. In general, very-long chain aliphatic (VLCA) compounds are present in much smaller amounts and alcohols and aldehydes follow the same trend during development. In contrast, the amount of fatty acids constantly increases from fruit set to ripening while wax esters only occur in significant amount at veraison and increase further. Wax crystals at the fruit surface are solely composed of VLCAs and the morphology changes during development according to the compositional changes of the VLCA wax compounds. The remarkable compositional differences between epicuticular wax crystals and the underlying wax are important to understand in terms of studying grape-pest interactions or the influence of environmental factors, since only wax crystals directly face the environment. Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-326053 VL - 16 IS - 2 ER - TY - JOUR A1 - Staiger, Simona A1 - Seufert, Pascal A1 - Arand, Katja A1 - Burghardt, Markus A1 - Popp, Christian A1 - Riederer, Markus T1 - The permeation barrier of plant cuticles: uptake of active ingredients is limited by very long-chain aliphatic rather than cyclic wax compounds JF - Pest Management Science N2 - BACKGROUND: The barrier to diffusion of organic solutes across the plant cuticle is composed of waxes consisting of very long-chain aliphatic (VLCA) and, to varying degrees, cyclic compounds like pentacyclic triterpenoids. The roles of both fractions in controlling cuticular penetration by organic solutes, e.g. the active ingredients (AI) of pesticides, are unknown to date. We studied thepermeabilityof isolated leaf cuticularmembranes from Garcinia xanthochymus andPrunus laurocerasus for lipophilic azoxystrobin and theobromine as model compounds for hydrophilic AIs. RESULTS: The wax of P. laurocerasus consists of VLCA (12%) and cyclic compounds (88%), whereas VLCAs make up 97% of the wax of G. xanthochymus.We showthat treating isolated cuticles with methanol almost quantitatively releases the cyclic fraction while leaving the VLCA fraction essentially intact. All VLCAs were subsequently removed using chloroform. In both species, the permeance of the two model compounds did not change significantly after methanol treatment, whereas chloroform extraction had a large effect on organic solute permeability. CONCLUSION: The VLCA wax fractionmakes up the permeability barrier for organic solutes, whereas cyclic compounds even in high amounts have a negligible role. This is of significance when optimizing the foliar uptake of pesticides. KW - cuticular permeability KW - active ingredients KW - very long-chain aliphatic compounds KW - cyclic compounds KW - pesicicles Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204778 VL - 75 IS - 12 ER -