TY - JOUR A1 - Hahn, Lukas A1 - Beudert, Matthias A1 - Gutmann, Marcus A1 - Keßler, Larissa A1 - Stahlhut, Philipp A1 - Fischer, Lena A1 - Karakaya, Emine A1 - Lorson, Thomas A1 - Thievessen, Ingo A1 - Detsch, Rainer A1 - Lühmann, Tessa A1 - Luxenhofer, Robert T1 - From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking JF - Macromolecular Bioscience N2 - Hydrogels are key components in bioink formulations to ensure printability and stability in biofabrication. In this study, a well-known Diels-Alder two-step post-polymerization modification approach is introduced into thermogelling diblock copolymers, comprising poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine). The diblock copolymers are partially hydrolyzed and subsequently modified by acid/amine coupling with furan and maleimide moieties. While the thermogelling and shear-thinning properties allow excellent printability, trigger-less cell-friendly Diels-Alder click-chemistry yields long-term shape-fidelity. The introduced platform enables easy incorporation of cell-binding moieties (RGD-peptide) for cellular interaction. The hydrogel is functionalized with RGD-peptides using thiol-maleimide chemistry and cell proliferation as well as morphology of fibroblasts seeded on top of the hydrogels confirm the cell adhesion facilitated by the peptides. Finally, bioink formulations are tested for biocompatibility by incorporating fibroblasts homogenously inside the polymer solution pre-printing. After the printing and crosslinking process good cytocompatibility is confirmed. The established bioink system combines a two-step approach by physical precursor gelation followed by an additional chemical stabilization, offering a broad versatility for further biomechanical adaptation or bioresponsive peptide modification. KW - chemical crosslinking KW - biofabrication KW - bioprinting KW - hydrogels Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257542 VL - 21 IS - 10 ER - TY - JOUR A1 - Wehrle, Esther A1 - Liedert, Astrid A1 - Heilmann, Aline A1 - Wehner, Tim A1 - Bindl, Ronny A1 - Fischer, Lena A1 - Haffner-Luntzer, Melanie A1 - Jakob, Franz A1 - Schinke, Thorsten A1 - Amling, Michael A1 - Ignatius, Anita T1 - The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice JF - Disease Models & Mechanisms N2 - Fracture healing is impaired in aged and osteoporotic individuals. Because adequate mechanical stimuli are able to increase bone formation, one therapeutical approach to treat poorly healing fractures could be the application of whole-body vibration, including low-magnitude high-frequency vibration (LMHFV). We investigated the effects of LMHFV on fracture healing in aged osteoporotic mice. Female C57BL/6NCrl mice (n=96) were either ovariectomised (OVX) or sham operated (non-OVX) at age 41 weeks. When aged to 49 weeks, all mice received a femur osteotomy that was stabilised using an external fixator. The mice received whole-body vibrations (20 minutes/day) with 0.3 g peak-to-peak acceleration and a frequency of 45 Hz. After 10 and 21 days, the osteotomised femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, micro-computed tomography (mu CT), histology and gene expression analyses. LMHFV disturbed fracture healing in aged non-OVX mice, with significantly reduced flexural rigidity (-81%) and bone formation (-80%) in the callus. Gene expression analyses demonstrated increased oestrogen receptor β (ERβ, encoded by Esr2) and Sost expression in the callus of the vibrated animals, but decreased β-catenin, suggesting that ERβ might mediate these negative effects through inhibition of osteoanabolic Wnt/β-catenin signalling. In contrast, in OVX mice, LMHFV significantly improved callus properties, with increased flexural rigidity (+ 1398%) and bone formation (+637%), which could be abolished by subcutaneous oestrogen application (0.025 mg oestrogen administered in a 90-day-release pellet). On a molecular level, we found an upregulation of ER alpha in the callus of the vibrated OVX mice, whereas ERβ was unaffected, indicating that ERa might mediate the osteoanabolic response. Our results indicate a major role for oestrogen in the mechanostimulation of fracture healing and imply that LMHFV might only be safe and effective in confined target populations. KW - level mechanical vibrations KW - ovariectomized rats KW - bone formation KW - LMHFV KW - whole body vibration KW - receptor beta KW - replacement therapy KW - osteoblastic cells KW - early stage KW - alpha KW - Wnt KW - fracture healing KW - oestrogen receptor signalling KW - Wnt signalling Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144700 VL - 8 ER - TY - JOUR A1 - Wehrle, Esther A1 - Liedert, Astrid A1 - Heilmann, Aline A1 - Wehner, Tim A1 - Bindl, Ronny A1 - Fischer, Lena A1 - Haffner-Luntzer, Melanie A1 - Jakob, Franz A1 - Schinke, Thorsten A1 - Amling, Michael A1 - Ignatius, Anita T1 - The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice JF - Disease Models & Mechanisms N2 - Fracture healing is impaired in aged and osteoporotic individuals. Because adequate mechanical stimuli are able to increase bone formation, one therapeutical approach to treat poorly healing fractures could be the application of whole-body vibration, including low-magnitude high-frequency vibration (LMHFV). We investigated the effects of LMHFV on fracture healing in aged osteoporotic mice. Female C57BL/6NCrl mice (n=96) were either ovariectomised (OVX) or sham operated (non-OVX) at age 41 weeks. When aged to 49 weeks, all mice received a femur osteotomy that was stabilised using an external fixator. The mice received whole-body vibrations (20 minutes/day) with 0.3 G: peak-to-peak acceleration and a frequency of 45 Hz. After 10 and 21 days, the osteotomised femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, micro-computed tomography (μCT), histology and gene expression analyses. LMHFV disturbed fracture healing in aged non-OVX mice, with significantly reduced flexural rigidity (-81%) and bone formation (-80%) in the callus. Gene expression analyses demonstrated increased oestrogen receptor β (ERβ, encoded by Esr2) and Sost expression in the callus of the vibrated animals, but decreased β-catenin, suggesting that ERβ might mediate these negative effects through inhibition of osteoanabolic Wnt/β-catenin signalling. In contrast, in OVX mice, LMHFV significantly improved callus properties, with increased flexural rigidity (+1398%) and bone formation (+637%), which could be abolished by subcutaneous oestrogen application (0.025 mg oestrogen administered in a 90-day-release pellet). On a molecular level, we found an upregulation of ERα in the callus of the vibrated OVX mice, whereas ERβ was unaffected, indicating that ERα might mediate the osteoanabolic response. Our results indicate a major role for oestrogen in the mechanostimulation of fracture healing and imply that LMHFV might only be safe and effective in confined target populations. KW - fracture healing KW - LMHFV KW - oestrogen receptor signalling KW - whole-body vibration KW - Wnt-signalling Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121109 VL - 8 ER -