TY - JOUR A1 - Al-Warhi, Tarfah A1 - Elmaidomy, Abeer H. A1 - Maher, Sherif A. A1 - Abu-Baih, Dalia H. A1 - Selim, Samy A1 - Albqmi, Mha A1 - Al-Sanea, Mohammad M. A1 - Alnusaire, Taghreed S. A1 - Ghoneim, Mohammed M. A1 - Mostafa, Ehab M. A1 - Hussein, Shaimaa A1 - El-Damasy, Ashraf K. A1 - Saber, Entesar Ali A1 - Elrehany, Mahmoud A. A1 - Sayed, Ahmed M. A1 - Othman, Eman M. A1 - El-Sherbiny, Mohamed A1 - Abdelmohsen, Usama Ramadan T1 - The wound-healing potential of Olea europaea L. Cv. Arbequina leaves extract: an integrated in vitro, in silico, and in vivo investigation JF - Metabolites N2 - Olea europaea L. Cv. Arbequina (OEA) (Oleaceae) is an olive variety species that has received little attention. Besides our previous work for the chemical profiling of OEA leaves using LC–HRESIMS, an additional 23 compounds are identified. An excision wound model is used to measure wound healing action. Wounds are provided with OEA (2% w/v) or MEBO\(^®\) cream (marketed treatment). The wound closure rate related to vehicle-treated wounds is significantly increased by OEA. Comparing to vehicle wound tissues, significant levels of TGF-β in OEA and MEBO\(^®\) (p < 0.05) are displayed by gene expression patterns, with the most significant levels in OEA-treated wounds. Proinflammatory TNF-α and IL-1β levels are substantially reduced in OEA-treated wounds. The capability of several lignan-related compounds to interact with MMP-1 is revealed by extensive in silico investigation of the major OEA compounds (i.e., inverse docking, molecular dynamics simulation, and ΔG calculation), and their role in the wound-healing process is also characterized. The potential of OEA as a potent MMP-1 inhibitor is shown in subsequent in vitro testing (IC\(_{50}\) = 88.0 ± 0.1 nM). In conclusion, OEA is introduced as an interesting therapeutic candidate that can effectively manage wound healing because of its anti-inflammatory and antioxidant properties. KW - olive KW - LC–HRESIMS KW - wound KW - Olea KW - TNF-α KW - virtual docking KW - TGF-β KW - MMP-1 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286150 SN - 2218-1989 VL - 12 IS - 9 ER - TY - JOUR A1 - Rushdi, Mohammed I. A1 - Abdel-Rahman, Iman A. M. A1 - Attia, Eman Zekry A1 - Saber, Hani A1 - Saber, Abdullah A. A1 - Bringmann, Gerhard A1 - Abdelmohsen, Usama Ramadan T1 - The biodiversity of the genus Dictyota: phytochemical and pharmacological natural products prospectives JF - Molecules N2 - Although a broad variety of classes of bioactive compounds have already been isolated from seaweeds of the genus Dictyota, most different species are still chemically and biologically unexplored. Dictyota species are well-known brown seaweeds belonging to the Dictyotaceae (Phaeophyta). The phytochemical composition within the genus Dictyota has recently received considerable interest, and a vast array of components, including diterpenes, sesquiterepenes, sterols, amino acids, as well as saturated and polyunsaturated fatty acids, have been characterized. The contribution of these valued metabolites to the biological potential, which includes anti-proliferative, anti-microbial, antiviral, antioxidant, anti-inflammatory, and anti-hyperpigmentation activities, of the genus Dictyota has also been explored. Therefore, this is the most comprehensive review, focusing on the published literature relevant to the chemically and pharmacologically diverse biopharmaceuticals isolated from different species of the genus Dictyota during the period from 1976 to now. KW - Phaeophyceae KW - Dictyotaceae KW - marine macroalgae KW - brown seaweeds KW - natural products KW - bioactivities KW - Dictyota Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302428 SN - 1420-3049 VL - 27 IS - 3 ER - TY - JOUR A1 - Alnusaire, Taghreed S. A1 - Sayed, Ahmed M. A1 - Elmaidomy, Abeer H. A1 - Al-Sanea, Mohammad M. A1 - Albogami, Sarah A1 - Albqmi, Mha A1 - Alowaiesh, Bassam F. A1 - Mostafa, Ehab M. A1 - Musa, Arafa A1 - Youssif, Khayrya A. A1 - Refaat, Hesham A1 - Othman, Eman M. A1 - Dandekar, Thomas A1 - Alaaeldin, Eman A1 - Ghoneim, Mohammed M. A1 - Abdelmohsen, Usama Ramadan T1 - An in vitro and in silico study of the enhanced antiproliferative and pro-oxidant potential of Olea europaea L. cv. Arbosana leaf extract via elastic nanovesicles (spanlastics) JF - Antioxidants N2 - The olive tree is a venerable Mediterranean plant and often used in traditional medicine. The main aim of the present study was to evaluate the effect of Olea europaea L. cv. Arbosana leaf extract (OLE) and its encapsulation within a spanlastic dosage form on the improvement of its pro-oxidant and antiproliferative activity against HepG-2, MCF-7, and Caco-2 human cancer cell lines. The LC-HRESIMS-assisted metabolomic profile of OLE putatively annotated 20 major metabolites and showed considerable in vitro antiproliferative activity against HepG-2, MCF-7, and Caco-2 cell lines with IC\(_{50}\) values of 9.2 ± 0.8, 7.1 ± 0.9, and 6.5 ± 0.7 µg/mL, respectively. The encapsulation of OLE within a (spanlastic) nanocarrier system, using a spraying method and Span 40 and Tween 80 (4:1 molar ratio), was successfully carried out (size 41 ± 2.4 nm, zeta potential 13.6 ± 2.5, and EE 61.43 ± 2.03%). OLE showed enhanced thermal stability, and an improved in vitro antiproliferative effect against HepG-2, MCF-7, and Caco-2 (IC\(_{50}\) 3.6 ± 0.2, 2.3 ± 0.1, and 1.8 ± 0.1 µg/mL, respectively) in comparison to the unprocessed extract. Both preparations were found to exhibit pro-oxidant potential inside the cancer cells, through the potential inhibitory activity of OLE against glutathione reductase and superoxide dismutase (IC\(_{50}\) 1.18 ± 0.12 and 2.33 ± 0.19 µg/mL, respectively). These inhibitory activities were proposed via a comprehensive in silico study to be linked to the presence of certain compounds in OLE. Consequently, we assume that formulating such a herbal extract within a suitable nanocarrier would be a promising improvement of its therapeutic potential. KW - olive KW - metabolomic profiling KW - antiproliferative KW - pro-oxidant KW - encapsulation KW - spanlastic KW - nanocarrier KW - docking KW - molecular dynamics simulation KW - Olea Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250064 SN - 2076-3921 VL - 10 IS - 12 ER - TY - JOUR A1 - Abdelhameed, Reda F. A. A1 - Habib, Eman S. A1 - Eltahawy, Nermeen A. A1 - Hassanean, Hashim A. A1 - Ibrahim, Amany K. A1 - Mohammed, Anber F. A1 - Fayez, Shaimaa A1 - Hayallah, Alaa M. A1 - Yamada, Koji A1 - Behery, Fathy A. A1 - Al-Sanea, Mohammad M. A1 - Alzarea, Sami I. A1 - Bringmann, Gerhard A1 - Ahmed, Safwat A. A1 - Abdelmohsen, Usama Ramadan T1 - New cytotoxic natural products from the Red Sea sponge Stylissa carteri JF - Marine Drugs N2 - Bioactivity-guided isolation supported by LC-HRESIMS metabolic profiling led to the isolation of two new compounds, a ceramide, stylissamide A (1), and a cerebroside, stylissoside A (2), from the methanol extract of the Red Sea sponge Stylissa carteri. Structure elucidation was achieved using spectroscopic techniques, including 1D and 2D NMR and HRMS. The bioactive extract’s metabolomic profiling showed the existence of various secondary metabolites, mainly oleanane-type saponins, phenolic diterpenes, and lupane triterpenes. The in vitro cytotoxic activity of the isolated compounds was tested against two human cancer cell lines, MCF-7 and HepG2. Both compounds, 1 and 2, displayed strong cytotoxicity against the MCF-7 cell line, with IC\(_{50}\) values at 21.1 ± 0.17 µM and 27.5 ± 0.18 µM, respectively. They likewise showed a promising activity against HepG2 with IC\(_{50}\) at 36.8 ± 0.16 µM for 1 and IC\(_{50}\) 30.5 ± 0.23 µM for 2 compared to the standard drug cisplatin. Molecular docking experiments showed that 1 and 2 displayed high affinity to the SET protein and to inhibitor 2 of protein phosphatase 2A (I2PP2A), which could be a possible mechanism for their cytotoxic activity. This paper spreads light on the role of these metabolites in holding fouling organisms away from the outer surface of the sponge, and the potential use of these defensive molecules in the production of novel anticancer agents. KW - LC-HRESIMS KW - Stylissa carteri KW - ceramide KW - cerebroside KW - docking KW - cytotoxic activity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205795 SN - 1660-3397 VL - 18 IS - 5 ER - TY - JOUR A1 - Eltamany, Enas E. A1 - Abdelmohsen, Usama Ramadan A1 - Hal, Dina M. A1 - Ibrahim, Amany K. A1 - Hassanean, Hashim A. A1 - Abdelhameed, Reda F. A. A1 - Temraz, Tarek A. A1 - Hajjar, Dina A1 - Makki, Arwa A. A1 - Hendawy, Omnia Magdy A1 - AboulMagd, Asmaa M. A1 - Youssif, Khayrya A. A1 - Bringmann, Gerhard A1 - Ahmed, Safwat A. T1 - Holospiniferoside: A New Antitumor Cerebroside from The Red Sea Cucumber Holothuria spinifera: In Vitro and In Silico Studies JF - Molecules N2 - Chemical investigation of the methanolic extract of the Red Sea cucumber Holothuria spinifera led to the isolation of a new cerebroside, holospiniferoside (1), together with thymidine (2), methyl-α-d-glucopyranoside (3), a new triacylglycerol (4), and cholesterol (5). Their chemical structures were established by NMR and mass spectrometric analysis, including gas chromatography–mass spectrometry (GC–MS) and high-resolution mass spectrometry (HRMS). All the isolated compounds are reported in this species for the first time. Moreover, compound 1 exhibited promising in vitro antiproliferative effect on the human breast cancer cell line (MCF-7) with IC\(_{50}\) of 20.6 µM compared to the IC50 of 15.3 µM for the drug cisplatin. To predict the possible mechanism underlying the cytotoxicity of compound 1, a docking study was performed to elucidate its binding interactions with the active site of the protein Mdm2–p53. Compound 1 displayed an apoptotic activity via strong interaction with the active site of the target protein. This study highlights the importance of marine natural products in the design of new anticancer agents. KW - Holothuria spinifera KW - HRMS KW - cerebrosides KW - molecular docking KW - cytotoxicity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234058 SN - 1420-3049 VL - 26 IS - 6 ER - TY - JOUR A1 - Abdelhameed, Reda F. A. A1 - Habib, Eman S. A1 - Goda, Marwa S. A1 - Fahim, John Refaat A1 - Hassanean, Hashem A. A1 - Eltamany, Enas E. A1 - Ibrahim, Amany K. A1 - AboulMagd, Asmaa M. A1 - Fayez, Shaimaa A1 - Abd El-kader, Adel M. A1 - Al-Warhi, Tarfah A1 - Bringmann, Gerhard A1 - Ahmed, Safwat A. A1 - Abdelmohsen, Usama Ramadan T1 - Thalassosterol, a New Cytotoxic Aromatase Inhibitor Ergosterol Derivative from the Red Sea Seagrass Thalassodendron ciliatum JF - Marine Drugs N2 - Thalassodendron ciliatum (Forssk.) Den Hartog is a seagrass belonging to the plant family Cymodoceaceae with ubiquitous phytoconstituents and important pharmacological potential, including antioxidant, antiviral, and cytotoxic activities. In this work, a new ergosterol derivative named thalassosterol (1) was isolated from the methanolic extract of T. ciliatum growing in the Red Sea, along with two known first-reported sterols, namely ergosterol (2) and stigmasterol (3), using different chromatographic techniques. The structure of the new compound was established based on 1D and 2D NMR spectroscopy and high-resolution mass spectrometry (HR-MS) and by comparison with the literature data. The new ergosterol derivative showed significant in vitro antiproliferative potential against the human cervical cancer cell line (HeLa) and human breast cancer (MCF-7) cell lines, with IC\(_{50}\) values of 8.12 and 14.24 µM, respectively. In addition, docking studies on the new sterol 1 explained the possible binding interactions with an aromatase enzyme; this inhibition is beneficial in both cervical and breast cancer therapy. A metabolic analysis of the crude extract of T. ciliatum using liquid chromatography combined with high-resolution electrospray ionization mass spectrometry (LC-ESI-HR-MS) revealed the presence of an array of phenolic compounds, sterols and ceramides, as well as di- and triglycerides. KW - cytotoxic activity KW - ergosterol derivative KW - metabolic analysis KW - docking studies KW - seagrass KW - Thalassodendron ciliatum Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236085 VL - 18 IS - 7 ER - TY - JOUR A1 - Abdelhameed, Reda F. A. A1 - Eltamany, Enas E. A1 - Hal, Dina M. A1 - Ibrahim, Amany K. A1 - AboulMagd, Asmaa M. A1 - Al-Warhi, Tarfah A1 - Youssif, Khayrya A. A1 - Abd El-kader, Adel M. A1 - Hassanean, Hashim A. A1 - Fayez, Shaimaa A1 - Bringmann, Gerhard A1 - Ahmed, Safwat A. A1 - Abdelmohsen, Usama Ramadan T1 - New cytotoxic cerebrosides from the Red Sea cucumber Holothuria spinifera supported by in-silico studies JF - Marine Drugs N2 - Bioactivity-guided fractionation of a methanolic extract of the Red Sea cucumber Holothuria spinifera and LC-HRESIMS-assisted dereplication resulted in the isolation of four compounds, three new cerebrosides, spiniferosides A (1), B (2), and C (3), and cholesterol sulfate (4). The chemical structures of the isolated compounds were established on the basis of their 1D NMR and HRMS spectral data. Metabolic profiling of the H. spinifera extract indicated the presence of diverse secondary metabolites, mostly hydroxy fatty acids, diterpenes, triterpenes, and cerebrosides. The isolated compounds were tested for their in vitro cytotoxicities against the breast adenocarcinoma MCF-7 cell line. Compounds 1, 2, 3, and 4 displayed promising cytotoxic activities against MCF-7 cells, with IC\(_{50}\) values of 13.83, 8.13, 8.27, and 35.56 µM, respectively, compared to that of the standard drug doxorubicin (IC\(_{50}\) 8.64 µM). Additionally, docking studies were performed for compounds 1, 2, 3, and 4 to elucidate their binding interactions with the active site of the SET protein, an inhibitor of protein phosphatase 2A (PP2A), which could explain their cytotoxic activity. This study highlights the important role of these metabolites in the defense mechanism of the sea cucumber against fouling organisms and the potential uses of these active molecules in the design of new anticancer agents. KW - LC-HRESIMS KW - Holothuria spinifera KW - cerebrosides KW - molecular docking KW - cytotoxicity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211089 SN - 1660-3397 VL - 18 IS - 8 ER - TY - JOUR A1 - Cheng, Cheng A1 - Othman, Eman M. A1 - Stopper, Helga A1 - Edrada-Ebel, RuAngelie A1 - Hentschel, Ute A1 - Abdelmohsen, Usama Ramadan T1 - Isolation of petrocidin A, a new cytotoxic cyclic dipeptide from the marine sponge-derived bacterium \(Streptomyces\) sp. SBT348 JF - Marine Drugs N2 - A new cyclic dipeptide, petrocidin A (\(\textbf{1}\)), along with three known compounds—2,3-dihydroxybenzoic acid (\(\textbf{2}\)), 2,3-dihydroxybenzamide (\(\textbf{3}\)), and maltol (\(\textbf{4}\))—were isolated from the solid culture of \(Streptomyces\) sp. SBT348. The strain \(Streptomyces\) sp. SBT348 had been prioritized in a strain collection of 64 sponge-associated actinomycetes based on its distinct metabolomic profile using liquid chromatography/high-resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR). The absolute configuration of all α-amino acids was determined by HPLC analysis after derivatization with Marfey’s reagent and comparison with commercially available reference amino acids. Structure elucidation was pursued in the presented study by mass spectrometry and NMR spectral data. Petrocidin A (\(\textbf{1}\)) and 2,3-dihydroxybenzamide (\(\textbf{3}\)) exhibited significant cytotoxicity towards the human promyelocytic HL-60 and the human colon adenocarcinoma HT-29 cell lines. These results demonstrated the potential of sponge-associated actinomycetes for the discovery of novel and pharmacologically active natural products. KW - biology KW - sponges KW - actinomycetes KW - streptomyces KW - cyclic dipeptide KW - cytotoxic Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172644 VL - 15 IS - 12 ER - TY - JOUR A1 - Zahran, Eman Maher A1 - Albohy, Amgad A1 - Khalil, Amira A1 - Ibrahim, Alyaa Hatem A1 - Ahmed, Heba Ali A1 - El-Hossary, Ebaa M. A1 - Bringmann, Gerhard A1 - Abdelmohsen, Usama Ramadan T1 - Bioactivity Potential of Marine Natural Products from Scleractinia-Associated Microbes and In Silico Anti-SARS-COV-2 Evaluation JF - Marine Drugs N2 - Marine organisms and their associated microbes are rich in diverse chemical leads. With the development of marine biotechnology, a considerable number of research activities are focused on marine bacteria and fungi-derived bioactive compounds. Marine bacteria and fungi are ranked on the top of the hierarchy of all organisms, as they are responsible for producing a wide range of bioactive secondary metabolites with possible pharmaceutical applications. Thus, they have the potential to provide future drugs against challenging diseases, such as cancer, a range of viral diseases, malaria, and inflammation. This review aims at describing the literature on secondary metabolites that have been obtained from Scleractinian-associated organisms including bacteria, fungi, and zooxanthellae, with full coverage of the period from 1982 to 2020, as well as illustrating their biological activities and structure activity relationship (SAR). Moreover, all these compounds were filtered based on ADME analysis to determine their physicochemical properties, and 15 compounds were selected. The selected compounds were virtually investigated for potential inhibition for SARS-CoV-2 targets using molecular docking studies. Promising potential results against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and methyltransferase (nsp16) are presented. KW - Scleractinia KW - marine bacteria KW - marine fungi KW - zooxanthellae KW - marine natural products KW - ADME analysis KW - SARS-CoV-2 KW - molecular docking KW - RNA-dependent RNA polymerase KW - methyltransferase Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220041 SN - 1660-3397 VL - 18 IS - 12 ER - TY - JOUR A1 - El-Hossary, Ebaa M. A1 - Abdel-Halim, Mohammad A1 - Ibrahim, Eslam S. A1 - Pimentel-Elardo, Sheila Marie A1 - Nodwell, Justin R. A1 - Handoussa, Heba A1 - Abdelwahab, Miada F. A1 - Holzgrabe, Ulrike A1 - Abdelmohsen, Usama Ramadan T1 - Natural Products Repertoire of the Red Sea JF - Marine Drugs N2 - Marine natural products have achieved great success as an important source of new lead compounds for drug discovery. The Red Sea provides enormous diversity on the biological scale in all domains of life including micro- and macro-organisms. In this review, which covers the literature to the end of 2019, we summarize the diversity of bioactive secondary metabolites derived from Red Sea micro- and macro-organisms, and discuss their biological potential whenever applicable. Moreover, the diversity of the Red Sea organisms is highlighted as well as their genomic potential. This review is a comprehensive study that compares the natural products recovered from the Red Sea in terms of ecological role and pharmacological activities. KW - Red Sea KW - marine natural products KW - marine organisms KW - biodiversity KW - marine metagenomics KW - bioactivity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213110 SN - 1660-3397 VL - 18 IS - 9 ER - TY - JOUR A1 - El-Hawary, Seham S. A1 - Sayed, Ahmed M. A1 - Mohammed, Rabab A1 - Hassan, Hossam M. A1 - Rateb, Mostafa E. A1 - Amin, Elham A1 - Mohammed, Tarek A. A1 - El-Mesery, Mohamed A1 - Bin Muhsinah, Abdullatif A1 - Alsayari, Abdulrhman A1 - Wajant, Harald A1 - Anany, Mohamed A. A1 - Abdelmohsen, Usama Ramadan T1 - Bioactive brominated oxindole alkaloids from the Red Sea sponge Callyspongia siphonella JF - Marine Drugs N2 - In the present study, LC-HRESIMS-assisted dereplication along with bioactivity-guided isolation led to targeting two brominated oxindole alkaloids (compounds 1 and 2) which probably play a key role in the previously reported antibacterial, antibiofilm, and cytotoxicity of Callyspongia siphonella crude extracts. Both metabolites showed potent antibacterial activity against Gram-positive bacteria, Staphylococcus aureus (minimum inhibitory concentration (MIC) = 8 and 4 µg/mL) and Bacillus subtilis (MIC = 16 and 4 µg/mL), respectively. Furthermore, they displayed moderate biofilm inhibitory activity in Pseudomonas aeruginosa (49.32% and 41.76% inhibition, respectively), and moderate in vitro antitrypanosomal activity (13.47 and 10.27 µM, respectively). In addition, they revealed a strong cytotoxic effect toward different human cancer cell lines, supposedly through induction of necrosis. This study sheds light on the possible role of these metabolites (compounds 1 and 2) in keeping fouling organisms away from the sponge outer surface, and the possible applications of these defensive molecules in the development of new anti-infective agents. KW - Callyspongia siphonella KW - LC-HRESIMS KW - metabolomic profiling KW - oxindole alkaloids KW - tisindoline KW - antibacterial KW - antibiofilm KW - antitrypanosomal KW - anticancer Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201485 VL - 17 IS - 8 ER - TY - JOUR A1 - Elmaidomy, Abeer H. A1 - Mohammed, Rabab A1 - Hassan, Hossam M. A1 - Owis, Asmaa I. A1 - Rateb, Mostafa E. A1 - Khanfar, Mohammad A. A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Abdelmohsen, Usama Ramadan T1 - Metabolomic profiling and cytotoxic tetrahydrofurofuran lignans investigations from Premna odorata Blanco JF - Metabolites N2 - Metabolomic profiling of different Premna odorata Blanco (Lamiaceae) organs, bark, wood, young stems, flowers, and fruits dereplicated 20, 20, 10, 20, and 20 compounds, respectively, using LC–HRESIMS. The identified metabolites (1–34) belonged to different chemical classes, including iridoids, flavones, phenyl ethanoids, and lignans. A phytochemical investigation of P. odorata bark afforded one new tetrahydrofurofuran lignan, 4β-hydroxyasarinin 35, along with fourteen known compounds. The structure of the new compound was confirmed using extensive 1D and 2D NMR, and HRESIMS analyses. A cytotoxic investigation of compounds 35–38 against the HL-60, HT-29, and MCF-7 cancer cell lines, using the MTT assay showed that compound 35 had cytotoxic effects against HL-60 and MCF-7 with IC50 values of 2.7 and 4.2 µg/mL, respectively. A pharmacophore map of compounds 35 showed two hydrogen bond acceptor (HBA) aligning the phenoxy oxygen atoms of benzodioxole moieties, two aromatic ring features vectored on the two phenyl rings, one hydrogen bond donor (HBD) feature aligning the central hydroxyl group and thirteen exclusion spheres which limit the boundaries of sterically inaccessible regions of the target’s active site. KW - Premna KW - lignan KW - metabolomic KW - cytotoxic KW - pharmacophore map Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193187 SN - 2218-1989 VL - 9 IS - 10 ER - TY - JOUR A1 - Keller, Alexander A1 - Brandel, Annette A1 - Becker, Mira C. A1 - Balles, Rebecca A1 - Abdelmohsen, Usama Ramadan A1 - Ankenbrand, Markus J. A1 - Sickel, Wiebke T1 - Wild bees and their nests host Paenibacillus bacteria with functional potential of avail JF - Microbiome N2 - Background: In previous studies, the gram-positive firmicute genus Paenibacillus was found with significant abundances in nests of wild solitary bees. Paenibacillus larvae is well-known for beekeepers as a severe pathogen causing the fatal honey bee disease American foulbrood, and other members of the genus are either secondary invaders of European foulbrood or considered a threat to honey bees. We thus investigated whether Paenibacillus is a common bacterium associated with various wild bees and hence poses a latent threat to honey bees visiting the same flowers. Results: We collected 202 samples from 82 individuals or nests of 13 bee species at the same location and screened each for Paenibacillus using high-throughput sequencing-based 16S metabarcoding. We then isolated the identified strain Paenibacillus MBD-MB06 from a solitary bee nest and sequenced its genome. We did find conserved toxin genes and such encoding for chitin-binding proteins, yet none specifically related to foulbrood virulence or chitinases. Phylogenomic analysis revealed a closer relationship to strains of root-associated Paenibacillus rather than strains causing foulbrood or other accompanying diseases. We found anti-microbial evidence within the genome, confirmed by experimental bioassays with strong growth inhibition of selected fungi as well as gram-positive and gram-negative bacteria. Conclusions: The isolated wild bee associate Paenibacillus MBD-MB06 is a common, but irregularly occurring part of wild bee microbiomes, present on adult body surfaces and guts and within nests especially in megachilids. It was phylogenetically and functionally distinct from harmful members causing honey bee colony diseases, although it shared few conserved proteins putatively toxic to insects that might indicate ancestral predisposition for the evolution of insect pathogens within the group. By contrast, our strain showed anti-microbial capabilities and the genome further indicates abilities for chitin-binding and biofilm-forming, suggesting it is likely a useful associate to avoid fungal penetration of the bee cuticula and a beneficial inhabitant of nests to repress fungal threats in humid and nutrient-rich environments of wild bee nests. KW - 16S metabarcoding KW - American foulbrood KW - anti-microbial activit KW - bacterial genomics KW - bioassays KW - European foulbrood KW - Paenibacterin KW - phylogenomics KW - bee disease KW - pathogen vector Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177554 VL - 6 IS - 229 ER - TY - JOUR A1 - Abdelhafez, Omnia Hesham A1 - Fawzy, Michael Atef A1 - Fahim, John Refaat A1 - Desoukey, Samar Yehia A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Abdelmohsen, Usama Ramadan T1 - Hepatoprotective potential of Malvaviscus arboreus against carbon tetrachloride-induced liver injury in rats JF - PLoS ONE N2 - Malvaviscus arboreus Cav. is a medicinal plant belonging to family Malvaceae with both ethnomedical and culinary value; however, its phytochemical and biological profiles have been scarcely studied. Accordingly, this work was designed to explore the chemical composition and the hepatoprotective potential of M. arboreus against carbon tetrachloride (CCl\(_4\))-induced hepatotoxicity. The total extract of the aerial parts and its derived fractions (petroleum ether, dichloromethane, ethyl acetate, and aqueous) were orally administered to rats for six consecutive days, followed by injection of CCl\(_4\) (1:1 v/v, in olive oil, 1.5 ml/kg, i.p.) on the next day. Results showed that the ethyl acetate and dichloromethane fractions significantly alleviated liver injury in rats as indicated by the reduced levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total bilirubin (TB), and malondialdehyde (MDA), along with enhancement of the total antioxidant capacities of their livers, with the maximum effects were recorded by the ethyl acetate fraction. Moreover, the protective actions of both fractions were comparable to those of silymarin (100 mg/kg), and have been also substantiated by histopathological evaluations. On the other hand, liquid chromatography-high resolution electrospray ionization mass spectrometry (LC‒HR‒ESI‒MS) metabolomic profiling of the crude extract of M. arboreus aerial parts showed the presence of a variety of phytochemicals, mostly phenolics, whereas the detailed chemical analysis of the most active fraction (i.e. ethyl acetate) resulted in the isolation and identification of six compounds for the first time in the genus, comprising four phenolic acids; β-resorcylic, caffeic, protocatechuic, and 4-hydroxyphenylacetic acids, in addition to two flavonoids; trifolin and astragalin. Such phenolic principles, together with their probable synergistic antioxidant and liver-protecting properties, seem to contribute to the observed hepatoprotective potential of M. arboreus. KW - high performance liquid chromatography KW - phenols KW - phytochemicals KW - antioxidants KW - metabolomics KW - medicinal plants KW - Egypt KW - xenobiotic metabolism KW - Malvaviscus arboreus Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177243 VL - 13 IS - 8 ER - TY - JOUR A1 - Shady, Nourhan Hisham A1 - El-Hossary, Ebaa M. A1 - Fouad, Mostafa A. A1 - Gulder, Tobias A. M. A1 - Kamel, Mohamed Salah A1 - Abdelmohsen, Usama Ramadan T1 - Bioactive natural products of marine sponges from the Genus Hyrtios JF - Molecules N2 - Marine sponges are known as a rich source for novel bioactive compounds with valuable pharmacological potential. One of the most predominant sponge genera is Hyrtios, reported to have various species such as Hyrtios erectus, Hyrtios reticulatus, Hyrtios gumminae, Hyrtios communis, and Hyrtios tubulatus and a number of undescribed species. Members of the genus Hyrtios are a rich source of natural products with diverse and valuable biological activities, represented by different chemical classes including alkaloids, sesterterpenes and sesquiterpenes. This review covers the literature until June 2016, providing a complete survey of all compounds isolated from the genus Hyrtios with their corresponding biological activities whenever applicable. KW - alkaloids KW - bioactive KW - marine natural products KW - marine sponges KW - Hyrtios Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158227 VL - 22 IS - 5 ER - TY - JOUR A1 - Abdelmohsen, Usama Ramadan A1 - Cheng, Cheng A1 - Viegelmann, Christina A1 - Zhang, Tong A1 - Grkovic, Tanja A1 - Ahmed, Safwat A1 - Quinn, Ronald J. A1 - Hentschel, Ute A1 - Edrada-Ebel, RuAngelie T1 - Dereplication Strategies for Targeted Isolation of New Antitrypanosomal Actinosporins A and B from a Marine Sponge Associated-Actinokineospora sp EG49 JF - Marine Drugs N2 - High resolution Fourier transform mass spectrometry (HRFTMS) and nuclear magnetic resonance (NMR) spectroscopy were employed as complementary metabolomic tools to dereplicate the chemical profile of the new and antitrypanosomally active sponge-associated bacterium Actinokineospora sp. EG49 extract. Principal Component (PCA), hierarchical clustering (HCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) were used to evaluate the HRFTMS and NMR data of crude extracts from four different fermentation approaches. Statistical analysis identified the best culture one-strain-many-compounds (OSMAC) condition and extraction procedure, which was used for the isolation of novel bioactive metabolites. As a result, two new O-glycosylated angucyclines, named actinosporins A (1) and B (2), were isolated from the broth culture of Actinokineospora sp. strain EG49, which was cultivated from the Red Sea sponge Spheciospongia vagabunda. The structures of actinosporins A and B were determined by 1D- and 2D-NMR techniques, as well as high resolution tandem mass spectrometry. Testing for antiparasitic properties showed that actinosporin A exhibited activity against Trypanosoma brucei brucei with an IC₅₀ value of 15 µM; however no activity was detected against Leishmania major and Plasmodium falciparum, therefore suggesting its selectivity against the parasite Trypanosoma brucei brucei; the causative agent of sleeping sickness. KW - dereplication KW - secondary metabolomics KW - anti-trypanosoma KW - Actinokineospora KW - Spheciospongia vagabunda KW - actinosporins Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119876 SN - 1660-3397 VL - 12 IS - 3 ER - TY - JOUR A1 - Dashti, Yousef A1 - Grkovic, Tanja A1 - Abdelmohsen, Usama Ramadan A1 - Hentschel, Ute A1 - Quinn, Ronald J. T1 - Production of Induced Secondary Metabolites by a Co-Culture of Sponge-Associated Actinomycetes, Actinokineospora sp EG49 and Nocardiopsis sp RV163 JF - MARINE DRUGS N2 - Two sponge-derived actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163, were grown in co-culture and the presence of induced metabolites monitored by H-1 NMR. Ten known compounds, including angucycline, diketopiperazine and beta-carboline derivatives 1-10, were isolated from the EtOAc extracts of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Co-cultivation of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163 induced the biosynthesis of three natural products that were not detected in the single culture of either microorganism, namely N-(2-hydroxyphenyl)-acetamide (11), 1,6-dihydroxyphenazine (12) and 5a, 6,11a, 12-tetrahydro-5a, 11a-dimethyl[1,4]benzoxazino[3,2-b][1,4]benzoxazine (13a). When tested for biological activity against a range of bacteria and parasites, only the phenazine 12 was active against Bacillus sp. P25, Trypanosoma brucei and interestingly, against Actinokineospora sp. EG49. These findings highlight the co-cultivation approach as an effective strategy to access the bioactive secondary metabolites hidden in the genomes of marine actinomycetes. KW - co-cultivation KW - induced metabolites KW - sponge-associated actinomyetes KW - NMR fingerprint KW - bioactivity KW - natural products KW - A-D KW - aspergillus fumigatus KW - marine KW - biosynthesis Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116547 SN - 1660-3397 VL - 12 IS - 5 ER - TY - JOUR A1 - Oli, Swarna A1 - Abdelmohsen, Usama Ramadan A1 - Hentschel, Ute A1 - Schirmeister, Tanja T1 - Identification of Plakortide E from the Caribbean Sponge Plakortis halichondroides as a Trypanocidal Protease Inhibitor using Bioactivity-Guided Fractionation JF - MARINE DRUGS N2 - In this paper, we report new protease inhibitory activity of plakortide E towards cathepsins and cathepsin-like parasitic proteases. We further report on its anti-parasitic activity against Trypanosoma brucei with an IC50 value of 5 mu M and without cytotoxic effects against J774.1 macrophages at 100 mu M concentration. Plakortide E was isolated from the sponge Plakortis halichondroides using enzyme assay-guided fractionation and identified by NMR spectroscopy and mass spectrometry. Furthermore, enzyme kinetic studies confirmed plakortide E as a non-competitive, slowly-binding, reversible inhibitor of rhodesain. KW - plakortis halichondroides KW - plakortide E. KW - protease inhibitor KW - slowly-binding reversible inhibitor KW - cathepsin KW - trypanosoma brucei KW - cysteine protease KW - malaria parasites KW - cathepsin-L KW - in-vitro KW - rhodesain Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116536 SN - 1660-3397 VL - 12 IS - 5 ER - TY - JOUR A1 - Macintyre, Lynsey A1 - Zhang, Tong A1 - Viegelmann, Christina A1 - Martinez, Ignacio Juarez A1 - Cheng, Cheng A1 - Dowdells, Catherine A1 - Abdelmohsen, Usama Ramadan A1 - Gernert, Christine A1 - Hentschel, Ute A1 - Edrada-Ebel, RuAngelie T1 - Metabolomic Tools for Secondary Metabolite Discovery from Marine Microbial Symbionts JF - Marine Drugs N2 - Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR H-1 and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening. KW - multivariate analysis KW - metabolic profiling KW - metabolomics KW - dereplication KW - symbiotic bacteria KW - mass spectrometry KW - NMR KW - sponge holicolona-simulans KW - bryozoan bugula-neritina KW - polyketide synthase gene Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116097 SN - 1660-3397 VL - 12 IS - 6 ER - TY - JOUR A1 - Abdelmohsen, Usama Ramadan A1 - Yang, Chen A1 - Horn, Hannes A1 - Hajjar, Dina A1 - Ravasi, Timothy A1 - Hentschel, Ute T1 - Actinomycetes from Red Sea Sponges: Sources for Chemical and Phylogenetic Diversity N2 - The diversity of actinomycetes associated with marine sponges collected off Fsar Reef (Saudi Arabia) was investigated in the present study. Forty-seven actinomycetes were cultivated and phylogenetically identified based on 16S rRNA gene sequencing and were assigned to 10 different actinomycete genera. Eight putatively novel species belonging to genera Kocuria, Mycobacterium, Nocardia, and Rhodococcus were identified based on sequence similarity values below 98.2% to other 16S rRNA gene sequences available in the NCBI database. PCR-based screening for biosynthetic genes including type I and type II polyketide synthases (PKS-I, PKS-II) as well as nonribosomal peptide synthetases (NRPS) showed that 20 actinomycete isolates encoded each at least one type of biosynthetic gene. The organic extracts of nine isolates displayed bioactivity against at least one of the test pathogens, which were Gram-positive and Gram-negative bacteria, fungi, human parasites, as well as in a West Nile Virus protease enzymatic assay. These results emphasize that marine sponges are a prolific resource for novel bioactive actinomycetes with potential for drug discovery. KW - PKS I KW - Meeresschwämme KW - PKS II KW - NRPS KW - Red sea KW - sponges KW - actinomycetes KW - bioactivity Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112882 ER - TY - JOUR A1 - Harjes, Janno A1 - Ryu, Taewoo A1 - Abdelmohsen, Usama Ramadan A1 - Moitinho-Silva, Lucas A1 - Horn, Hannes A1 - Ravasi, Timothy A1 - Hentschel, Ute T1 - Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49 N2 - The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters. KW - Strahlenpilze Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112776 ER - TY - JOUR A1 - Abdelmohsen, Usama Ramadan A1 - Szesny, Matthias A1 - Othman, Eman Maher A1 - Schirmeister, Tanja A1 - Grond, Stepanie A1 - Stopper, Helga A1 - Hentschel, Ute T1 - Antioxidant and Anti-Protease Activities of Diazepinomicin from the Sponge-Associated Micromonospora Strain RV115 N2 - Diazepinomicin is a dibenzodiazepine alkaloid with an unusual structure among the known microbial metabolites discovered so far. Diazepinomicin was isolated from the marine sponge-associated strain Micromonospora sp. RV115 and was identified by spectroscopic analysis and by comparison to literature data. In addition to its interesting preclinical broad-spectrum antitumor potential, we report here new antioxidant and anti-protease activities for this compound. Using the ferric reducing antioxidant power (FRAP) assay, a strong antioxidant potential of diazepinomicin was demonstrated. Moreover, diazepinomicin showed a significant antioxidant and protective capacity from genomic damage induced by the reactive oxygen species hydrogen peroxide in human kidney (HK-2) and human promyelocytic (HL-60) cell lines. Additionally, diazepinomicin inhibited the proteases rhodesain and cathepsin L at an IC50 of 70–90 μM. It also showed antiparasitic activity against trypomastigote forms of Trypanosoma brucei with an IC50 of 13.5 μM. These results showed unprecedented antioxidant and anti-protease activities of diazepinomicin, thus further highlighting its potential as a future drug candidate. KW - Biologie KW - diazepinomicin KW - anti-protease KW - antioxidant KW - actinomycetes KW - Micromonospora Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76279 ER - TY - JOUR A1 - Abdelmohsen, Usama Ramadan A1 - Pimentel-Elardo, Sheila M. A1 - Hanora, Amro A1 - Radwan, Mona A1 - Abou-El-Ela, Soad H. A1 - Ahmed, Safwat A1 - Hentschel, Ute T1 - Isolation, Phylogenetic Analysis and Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes N2 - Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia). Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, fungi (Candida albicans) and human parasites (Leishmania major, Trypanosoma brucei). Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents. KW - Biologie KW - actinomycetes KW - marine sponges KW - anti-infective KW - anti-parasitic KW - phylogenetic Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68307 ER - TY - THES A1 - Abdelmohsen, Usama Ramadan T1 - Antimicrobial Activities from Plant Cell Cultures and Marine Sponge-Associated Actinomycetes T1 - Antimikrobielle Aktivitäten aus Pflanzenzellkulturen und marinen Schwamm-assoziierten Actinomyceten N2 - This thesis is divided into three parts with the main goal allocating novel antimicrobial compounds that could be used as future antibiotics. The first part aimed to evaluate the potential of plant suspension cultures for the production of antimicrobial proteins. The extracellular, intracellular and cell wall bound fractions of seven heterotrophic and photomixotrophic plant cell suspension cultures treated with nine different elicitors were tested for the elicitor dependent production of antimicrobial proteins. Bioactivities were tested against a selected panel of human isolates including Gram-positive and Gram-negative bacteria as well as fungi using the disc diffusion assay. The intracellular fractions of elicited cell cultures were more active than extracellular fractions while the cell wall bound fractions showed lowest activities. Among the 21 fractions tested, the intracellular fraction of Lavendula angustifolia elicited with DC3000 was most active against Candida maltosa. The second most active fraction was the intracellular fraction of Arabidopsis thaliana elicited with salicylic acid which was moreover active against all test strains. The antimicrobial activity of elicited Arabidopsis thaliana cell cultures was tested by bioautography to locate the antimicrobial proteins in the crude extract. The intracellular fraction of photomixotrophic Arabidopsis thaliana cells elicited with salicylic acid was selected for further gel filtration chromatography on S-200 column leading to the purification of one 19 kDa antimicrobially active protein, designated, AtAMP. Our findings suggest that elicited plant cell cultures may present a new promising alternative source of antimicrobial proteins. The second part comprises the isolation of actinomycetes associated with marine sponges and testing the bioactivities of new species for further investigations. Actinobacterial communities of eleven taxonomically different sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia) were investigated by a culture-based approach using different standard media for isolation of actinomycetes and media enriched with aqueous sponge extract to target rare and new actinomycete species. Phylogenetic characterization of 52 representative isolates out of 90 based on almost complete sequences of genes encoding 16S rRNA supported their assignment to 18 different actinomycete genera. Altogether 14 putatively new species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. The use of M1 agar amended with aqueous sponge extract yielded a putative new genus related to Rubrobacter which highlighting the need for innovative cultivation protocols. Biological activity testing showed that five isolates were active against Gram-positives only, one isolate was active against Candida albicans only and one isolate showed activity against both groups of pathogens. Moreover, the antiparasistic activity was documented for four isolates. These results showed a high diversity of actinomycetes associated with marine sponges as well as highlighted their potential to produce anti-infective agents. The third part of the thesis focused on the isolation and structure elucidation of new bioactive compounds. Streptomyces strain RV15 recovered from sponge Dysidea tupha, was selected for further chemical analysis by virtue of the fact that it exhibited the greatest antimicrobial potential against Staphylococcus aureus as well as Candida albicans among the all tested strains. Moreover, members of the genus Streptomyces are well known as prolific producers of interesting pharmacologically active metabolites. Chemical analysis of the methanolic crude extract using different chromatographic tools yielded four new compounds. The structures of the new compounds were spectroscopically elucidated to be four new cyclic peptides, namely, cyclodysidins A-D. Their bioactivity was tested against different proteases, bacteria and Candida as well as tumor cell lines. The compounds did not show any significant activities at this point. N2 - Die hier vorliegende Dissertation ist in drei Kapitel gegliedert und hatte die Bereitstellung neuer antimikrobieller Substanzen, die zukünftig als Antibiotika genutzt werden könnten, zum Hauptziel. Das erste Kapitel befasst sich mit dem Potenzial von Pflanzen zur Produktion von Proteinen mit antimikrobieller Wirkung. Pflanzenzellkulturen wurden mit neun verschiedenen Induktoren stimuliert und anschließend auf die Produktion von Proteinen mit antimikrobieller Wirkung hin untersucht. Dafür wurden die extra-, intrazellulären sowie die membrangebundenen Proteinfraktionen von sieben heterotrophen und photomixotrophen Pflanzenzellkulturen extrahiert. Mittels Diffusionstests wurden die Wirkung der Proteine gegen eine Sammlung menschlicher Pathogene inklusive Gram-positiver und Gram-negativer Bakterien, sowie Pilze getestet. Die intrazellulären Fraktionen zeigten dabei höhere Aktivitäten als die extrazellulären, wohingegen die membrangebundenen Proteine die geringsten Aktivitäten aufwiesen. Von den insgesamt 21 getesteten Proteinfraktionen wies die mit DC3000 induzierte intrazelluläre Fraktion von Lavendula angustifolia die größte Wirkung gegen Candida maltosa auf. Die mit Salicylsäure induzierte intrazelluläre Proteinfraktion von Arabidopsis thaliana zeigte eine Hemmung aller getesteten pathogenen Stämme. Die antimikrobielle Aktivität der induzierten Arabidopsis thaliana-Zellkultur wurde mittels Bioautography weiter untersucht, um das wirksame Protein im Gesamt-(Roh-) extrakt einzugrenzen. Die intrazelluläre Fraktion der photomixotrophen Arabidopsis thaliana-Zellkultur wurde ausgewählt, um ein 19 kDa Protein mit antimikrobieller Wirkung, genannt AtAMP, mittels Gelfitrationschromatography über eine S-200 Säule aufzureinigen. Unsere Ergebnisse weisen darauf hin, dass induzierte Pflanzenzellkulturen zukünftig als aussichtsreiche alternative Quelle für antimikrobiell wirksame Proteine herangezogen werden können. Der zweite Teil dieser Dissertation beinhaltet die Isolation von mit marinen Schwämmen assoziierten Actinomyceten und deren Testung auf Bioaktivität. Aus 11 taxonomisch verschiedenen, an den Küsten von Ras Mohamed (Ägypten) und Rovinj (Kroatien) gesammelten Schwammspezies, wurden Actinobakterien auf verschiedenen Standardmedien kultiviert. Um seltene, neue Stämme zu isolieren, wurden diese Medien mit wässrigen Schwammextrakten angereichert. Die auf der 16S rRNA-Gensequenz basierenden phylogenetischen Charakterisierung von 52 der insgesamt 90 Isolate, zeigte die Zugehörigkeit zu 18 verschiedenen Actinomyceten-Gattungen. Die 16S rRNA-Gene von 14 Isolaten zeigten Homologien von weniger als 98,2% zu denen anderer in Datenbanken abgelegten Bakterien und stellen somit vermutlich neue Arten dar. Die Verwendung von mit Schwammextrakt angereichertem M1-Agar resultierte in der Kultivierung einer mutmaßlich neuen, mit Rubrobacter verwandten Gattung und bestätigt die Notwendigkeit der Entwicklung neuer innovativer Kultivierungsprotokolle. Aktivitätstests von fünf Isolaten zeigten deren hemmende Wirkung nur gegen Gram-positive Bakterien, ein Isolat zeigte Aktivität nur gegen Candida albicans und ein Isolat war wirksam gegen beide genannten Pathogengruppen. Desweiteren konnten antiparasitäre Wirkungen von vier Isolaten dokumentiert werden. Die hier beschriebenen Ergebnisse zeigen die große Diversität von mit Schwämmen assoziierten Actinomyceten und deren Potential Antiinfektiva zu produzieren. Der dritte Teil dieser Arbeit fokussierte sich auf die Isolation und Strukturaufklärung neuer bioaktiver Substanzen. Streptomyceten sind bekannt für die Produktion von interessanten, pharmakologisch aktiven Metaboliten. Der aus dem Schwamm Dysidea tupha isolierte Stamm Streptomyces RV 15 zeigte eine hohe Aktivität gegen Staphylococcus aureus und C. albicans und wurde deshalb für nähere Untersuchungen ausgewählt. Die chemische Analyse des Methanol-Rohextrakts unter der Verwendung verschiedener Chromatographie-Verfahren resultierte in der Isolation von vier Substanzen. Die spektroskopische Analyse zeigte, dass diese neuen Substanzen zyklische Peptidstrukturen aufweisen und wurden daraufhin als Cyclodysidin A-D benannt. Die Bioaktivitäten dieser Substanzen wurden gegen verschiedene Proteasen, Bakterien und Candida sowie gegen verschiedene Tumorzelllinien getestet. Bis zum jetzigen Zeitpunkt zeigte keine der getesteten Peptide eine aussagekräftige Wirkung. KW - Antimikrobieller Wirkstoff KW - Pflanzenzelle KW - Zellkultur KW - Antimikrobielle Aktivitäten KW - Pflanzenzellkulturen KW - Proteinen mit antimikrobieller Wirkung KW - Actinomyceten KW - zyklische Peptide KW - Antimicrobial activities KW - Plant cell cultures KW - Antimicrobial proteins KW - Actinomycetes KW - Cyclic peptides Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51483 ER -