TY - JOUR A1 - Gottschalk, Michael G. A1 - Richter, Jan A1 - Ziegler, Christiane A1 - Schiele, Miriam A. A1 - Mann, Julia A1 - Geiger, Maximilian J. A1 - Schartner, Christoph A1 - Homola, György A. A1 - Alpers, Georg W. A1 - Büchel, Christian A1 - Fehm, Lydia A1 - Fydrich, Thomas A1 - Gerlach, Alexander L. A1 - Gloster, Andrew T. A1 - Helbig-Lang, Sylvia A1 - Kalisch, Raffael A1 - Kircher, Tilo A1 - Lang, Thomas A1 - Lonsdorf, Tina B. A1 - Pané-Farré, Christiane A. A1 - Ströhle, Andreas A1 - Weber, Heike A1 - Zwanzger, Peter A1 - Arolt, Volker A1 - Romanos, Marcel A1 - Wittchen, Hans-Ulrich A1 - Hamm, Alfons A1 - Pauli, Paul A1 - Reif, Andreas A1 - Deckert, Jürgen A1 - Neufang, Susanne A1 - Höfler, Michael A1 - Domschke, Katharina T1 - Orexin in the anxiety spectrum: association of a HCRTR1 polymorphism with panic disorder/agoraphobia, CBT treatment response and fear-related intermediate phenotypes JF - Translational Psychiatry N2 - Preclinical studies point to a pivotal role of the orexin 1 (OX1) receptor in arousal and fear learning and therefore suggest the HCRTR1 gene as a prime candidate in panic disorder (PD) with/without agoraphobia (AG), PD/AG treatment response, and PD/AG-related intermediate phenotypes. Here, a multilevel approach was applied to test the non-synonymous HCRTR1 C/T Ile408Val gene variant (rs2271933) for association with PD/AG in two independent case-control samples (total n = 613 cases, 1839 healthy subjects), as an outcome predictor of a six-weeks exposure-based cognitive behavioral therapy (CBT) in PD/AG patients (n = 189), as well as with respect to agoraphobic cognitions (ACQ) (n = 483 patients, n = 2382 healthy subjects), fMRI alerting network activation in healthy subjects (n = 94), and a behavioral avoidance task in PD/AG pre- and post-CBT (n = 271). The HCRTR1 rs2271933 T allele was associated with PD/AG in both samples independently, and in their meta-analysis (p = 4.2 × 10−7), particularly in the female subsample (p = 9.8 × 10−9). T allele carriers displayed a significantly poorer CBT outcome (e.g., Hamilton anxiety rating scale: p = 7.5 × 10−4). The T allele count was linked to higher ACQ sores in PD/AG and healthy subjects, decreased inferior frontal gyrus and increased locus coeruleus activation in the alerting network. Finally, the T allele count was associated with increased pre-CBT exposure avoidance and autonomic arousal as well as decreased post-CBT improvement. In sum, the present results provide converging evidence for an involvement of HCRTR1 gene variation in the etiology of PD/AG and PD/AG-related traits as well as treatment response to CBT, supporting future therapeutic approaches targeting the orexin-related arousal system. KW - human behaviour KW - molecular neuroscience KW - personalized medicine KW - predictive markers KW - psychiatric disorders Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227479 VL - 9 ER - TY - JOUR A1 - Lechermeier, Carina G. A1 - Zimmer, Frederic A1 - Lüffe, Teresa M. A1 - Lesch, Klaus-Peter A1 - Romanos, Marcel A1 - Lillesaar, Christina A1 - Drepper, Carsten T1 - Transcript analysis of zebrafish GLUT3 genes, slc2a3a and slc2a3b, define overlapping as well as distinct expression domains in the zebrafish (Danio rerio) central nervous system JF - Frontiers in Molecular Neuroscience N2 - The transport of glucose across the cell plasma membrane is vital to most mammalian cells. The glucose transporter (GLUT; also called SLC2A) family of transmembrane solute carriers is responsible for this function in vivo. GLUT proteins encompass 14 different isoforms in humans with different cell type-specific expression patterns and activities. Central to glucose utilization and delivery in the brain is the neuronally expressed GLUT3. Recent research has shown an involvement of GLUT3 genetic variation or altered expression in several different brain disorders, including Huntington’s and Alzheimer’s diseases. Furthermore, GLUT3 was identified as a potential risk gene for multiple psychiatric disorders. To study the role of GLUT3 in brain function and disease a more detailed knowledge of its expression in model organisms is needed. Zebrafish (Danio rerio) has in recent years gained popularity as a model organism for brain research and is now well-established for modeling psychiatric disorders. Here, we have analyzed the sequence of GLUT3 orthologs and identified two paralogous genes in the zebrafish, slc2a3a and slc2a3b. Interestingly, the Glut3b protein sequence contains a unique stretch of amino acids, which may be important for functional regulation. The slc2a3a transcript is detectable in the central nervous system including distinct cellular populations in telencephalon, diencephalon, mesencephalon and rhombencephalon at embryonic and larval stages. Conversely, the slc2a3b transcript shows a rather diffuse expression pattern at different embryonic stages and brain regions. Expression of slc2a3a is maintained in the adult brain and is found in the telencephalon, diencephalon, mesencephalon, cerebellum and medulla oblongata. The slc2a3b transcripts are present in overlapping as well as distinct regions compared to slc2a3a. Double in situ hybridizations were used to demonstrate that slc2a3a is expressed by some GABAergic neurons at embryonic stages. This detailed description of zebrafish slc2a3a and slc2a3b expression at developmental and adult stages paves the way for further investigations of normal GLUT3 function and its role in brain disorders. KW - glucose transporter KW - nervous system KW - brain disorders KW - psychiatric disorders KW - brain development KW - GABA KW - GAD1 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201797 VL - 12 IS - 199 ER -